BakerSFleld: Bringing software fault isolation to x64

Joshua A. Kroll
Computer Science Department
Princeton University
Princeton, NJ, USA
kroll@cs.princeton.edu

Abstract—We present BakerSFIeld, a Software Fault
Isolation (SFI) framework for the x64 instruction set
architecture. BakerSFleld is derived from PittSFIeld,
and retains the assembly language rewriting style of
sandboxing, but has been substantially re-architected
for greater clarity, separating the concerns of rewriting
the program for memory safety, and re-aligning the
code for control-flow safety. BakerSFIeld also corrects
several significant security flaws we found in PittSFIeld.
We measure the performance of BakerSFleld on a
modern 64-bit desktop machine and determine that it
has significantly lower overhead than its 32-bit cousin.

I. INTRODUCTION

As widely distributed computing applications be-
come more decoupled and are used in ways that
can vary widely from day to day, trust relationships
become increasingly difficult to establish. For systems
with rapidly changing and mobile code, confinement
of untrusted code modules is a tenable alternative to
trust. Confinement is useful in secure systems design
when a component cannot be trusted or easily verified
to a high level of assurance. It also helps to place
the security burden on the system’s designers rather
than on users. Software Fault Isolation (SFI) [1], also
called sandboxing, implements memory and control-
flow confinement for untrusted code modules loaded
inside a trusted process.

The most common way to provide isolation of
untrusted code is via an operating system process,
which makes use of hardware memory protection to
separate zones of trust into distinct address spaces.
Efficiency in this world is gained by the use of special
hardware (e.g. MMUs and TLBs). However, these
methods are limited by the presence of hardware to
support them and interaction across address spaces can
be very expensive. Additionally, security policies are

Drew Dean
Computer Science Lab
SRI International
Menlo Park, CA, USA
ddean@csl.sri.com

generally coarse-grained, with all processes confined
to a pre-defined system call interface.

In SFI, we require all memory references to lie
within specific, pre-defined bounds. We further require
that all control flow transfer only allow instructions in
a specific, pre-defined memory region to be executed.
These properties can be checked statically for absolute
references. For indirect references (e.g. references to
memory or control transfer through a register), we
require that the code include dynamic checks of safety.
Code is verified at load time to ensure that all memory
references and control transfers are either (1) abso-
lutely safe or (2) include a valid dynamic check.

The original SFI techniques of Wahbe, et al. were
only applicable to RISC architectures in which in-
struction words have a constant length and consis-
tent alignment. Improved techniques from McCamant
and Morrisett [2] allow sandboxing in CISC architec-
tures by simulating constant-length instruction words
through careful code re-alignment. McCamant and
Morrisett also provide an implementation of their tech-
nique for the x86, which they call PittSFleld. Most
recently, Google has presented Native Client [3], a
re-implementation of PittSFleld which makes use of
x86 segment registers for efficiency. Here, we present
several improvements to the PittSFleld sandboxing
technique, fixing several vulnerabilities and improv-
ing end-to-end reliability. Alongside these, we present
BakerSFleld, an extension of the PittSFIeld tool which
supports the x64 instruction set.!

To our knowledge, BakerSFleld is the first imple-
mentation of SFI for the x64 instruction set. x64

"Throughout the paper, we will use x64 to denote the 64-bit
extensions to the x86 instruction set variously referred to as 64-bit
x86, AMD64, and x86-64.

brings several advantages over standard x86. First,
in the x64 architecture there are 16 general-purpose
registers, rather than the 8 in x86. This can allow for
more aggressive compiler optimization. Second, 64-bit
integer arithmetic is relevant in many use cases, such
as cryptographic computations. Finally, modern x86
processors make good use of advanced hardware tech-
niques such as superscalar execution and instruction-
level parallelism. As 64-bit chips make their way out
of the datacenter and into even low-end laptops, sup-
port for the x64 instruction set becomes increasingly
important. Finally, because x86 memory segmentation
is largely unavailable in x64, optimizations which
rely on it are no longer valid. Thus, producing high-
performance sandboxed code is a challenge.

This paper:

1) Describes vulnerabilities and improvements in
the PittSFleld SFI tool for the x86, improving
security and reliability.

2) Provides a novel SFI implementation based on
PittSFleld which supports the x64 instruction set.

3) Provides a platform-independent code rewriting
toolkit that acts on assembly source generated
by an unmodified compiler and which, after
transformation, can be built using a standard
assembler.

4) Analyzes in detail the performance of this
method on standard benchmarks. In particular,
we consider the performance benefit of using 64-
bit arithmetic.

The paper is laid out as follows. Section II describes
the development of prior approaches to SFI and related
low-level isolation technologies. Section II provides an
overview of the SFI techniques used in BakerSFleld.
Section IV describes the BakerSFleld architecture and
code modification strategy. Section V describes the
optimizations present in BakerSFleld, while Section VI
describes the results of running our tool in various
circumstances on a standard set of SFI benchmarks
taken from the PittSFleld project. Finally, Section VII
concludes.

II. BACKGROUND AND RELATED WORK

A. SFI: RISC and CISC

The original concept of Software Fault Isolation
came from Wahbe, Lucco et al. [1]. The key idea was
simple: adjust all memory accesses (including control

flow references) to go through a dedicated register.
Then by choosing a memory region whose size and
alignment are the same power of two, it is very easy
to guarantee that any memory access will lie within
that region. Simply by requiring that certain bits of that
register always remain constant, it is possible to ensure
that memory accesses are safe. For static references,
this can be checked offline. For indirect references,
it is necessary to insert some instructions to test and
set these bits. The calculations to ensure this property
require only bit operations, generally one and and one
or.

In addition to developing the concept of SFI, Wahbe
et al. provide a prototype implementation for the MIPS
and Alpha architectures and measure a protection
overhead of about 20% for both architectures. They
also implemented a low latency system for cross-
fault-domain RPC. They also include several important
optimizations: they use unmapped guard pages on
either side of a fault domain in order to allow for
offsets from a register without needing to compute
the effective address; they treat the stack pointer as
a dedicated sandbox register because it is heavily used
and never needs to leave the fault domain; finally,
they also avoid always sandboxing the stack pointer
by counting references to it.

The techniques of Wahbe et al. do not, however,
work for all architectures. Implicit in their technique
is a reliance on the fact that the instructions read
and verified are also the instructions available on
any execution path. This is naturally true for RISC
architectures with constant-length instruction words.
However, x86 has variable-length instruction words,
and any byte in instruction memory might constitute
the start of an instruction. In order to apply the Wahbe
et al. techniques directly, it would be necessary to
check all alternate parsings of the instruction stream
that could be reached on some execution path. To solve
this, McCamant and Morrisett proposed artificially im-
posing alignment constraints, choosing a power-of-two
number of bytes and padding groups of instructions
such that no instruction bridges two aligned blocks. In
this way, jumps can be checked to ensure that they
target the beginning of an aligned instruction group,
and reliable disassembly can be assured. Their imple-
mentation, PittSFIeld, is the basis of our BakerSFIeld
tool, and it will be described in greater detail below.

Wahbe et al. thought of their mechanism as applying

primarily to untrusted extension code. Today, as Inter-
net applications become ever-more full-featured, it is
only natural to ask how to isolate code which shares
an address space with trusted components. Browsers,
for example, are still in large part single-process
applications. Yee, Sehr, et al. [3] provide a novel
implementation of the PittSFleld techniques which is
geared towards the support of mobile native code
modules that can be embedded into web sites. Native
Client also supports a rich communication framework
for inter-fault-domain communication and has a rather
advanced trusted runtime to manage fault domains and
their interaction with the underlying system. Like [1],
Native Client uses a modified compiler tool chain to
generate sandbox-compliant code, requiring developers
to maintain separate infrastructure to produce sand-
boxed and non-sandboxed modules. Additionally, Na-
tive Client uses x86 memory segmentation to provide
data integrity, a technique which is not applicable in
x64.

B. Proof-Carrying Code

Three years after the publication of the first SFI
paper, Proof-Carrying Code (PCC) was introduced by
Necula and Lee.[4] PCC generalized SFI to verification
of proofs of arbitrary properties of code, rather than
just memory safety. PCC also implemented a more
sophisticated proof checker. SFI makes the memory
safety proof easy to check by explicitly inserting
address masking operations immediately before using
a memory address, much the same way that Scheme,
Python, or other dynamically-typed, but type-safe, lan-
guages have runtime type checks. In this analogy, PCC
is more like a statically-typed language (e.g., Standard
ML, Java): the safety checks (unless the proof checker
needs an explicit hint in the code) are done once,
statically, making for a theoretically more efficient
system — at the cost of proving a type soundness
theorem, which may require non-trivial effort.

The key question is whether the additional ex-
pressiveness of PCC over SFI is actually useful in
today’s systems: is memory-safety enough? Insofar as
few security policies are sufficiently formalized to be
expressible in logic (and hence directly expressible in
PCC), the answer may well be that memory safety is
the necessary fundamental building block. The other
issue with PCC is that the proofs tend to be quite large,
so that the overhead of acquiring (in a mobile code

setting) and checking the proofs can be significant.
Both PCC and SFI may impose runtime overhead, if
the proof checkers for the respective systems get in the
way of certain compiler optimizations.

Typed assembly language, TAL [5] is relevant to SFI
in much the same way. Here, invariants are expressed
as types, and proofs of invariants correspond to inhab-
itants of those types. In this way, TAL might be seen
as an intermediate position: the type system provides
added high-level expressiveness, but might incur some
additional effort on the part of the programmer.

C. Securing Untrusted Binaries

After the initial SFI work, much work has been
done on a variety of methods to secure systems against
untrusted binaries via confinement. We review some of
this work here.

MiSFIT [6] combined the techniques of Wahbe et
al. with static control flow analysis, collecting a list
of legal jump targets and redirecting indirect jumps
through code that checks explicitly that the target exists
in a hash table. It also requires code producers and
code consumers to share a secret, which is used to
sign generated code.

Nooks [7] isolates trusted kernel code from untrusted
device drivers using memory protection via a private
page table. Device drivers are managed by a trusted
runtime.

CFI [8] and XFI [9] use much finer grained tracking
of control flow to restrict control flow to a nearly-
arbitrary set of known targets. Additionally, XFI adds
SFI for data integrity.

Vx32 [10] mixes instruction translation for control-
flow integrity with x86 memory segmentation for data
integrity. It is exported not as a stand-alone runtime,
but as a library which can be linked with other appli-
cations. VXA [11] is a secure self-extracting archive
tool built on Vx32.

Xax [12] is a model for a browser plugin using hard-
ware memory isolation to create a kind of hardware
virtual machine, isolated behind a narrow system call
interface. Like Native Client, it is designed with mobile
native code in mind, exporting a platform-independent
Application Binary Interface and hooks for browser
and system services.

Virtualization systems such as Xen [13] and man-
aged code systems such as the Java Virtual Machine
[14] or CLR [15] also have strong isolation and control

flow properties, but the techniques employed and appli-
cations relevant to these technologies are significantly
different from SFI.

D. Optimizations: The Rise and Fall of Segmentation

x86 memory segmentation has long been a useful
technique for improving the performance of single-
address-space protection mechanisms. The idea is that
since the processor’s MMU is already doing segmen-
tation calculations even if segments are not explicitly
being used, by setting up data in different segments, it
is possible to isolate accesses by loading special values
into the segment registers and disallowing instructions
which modify these registers.

The use of x86 memory segmentation [16] for effi-
ciently multiplexing a virtual address space for security
dates back at least to interprocess communication
primitives in the L3 microkernel [17], although the
techniques are very crude and the goal is to create
a flat address space whenever possible. In [18], the
technique of using segment registers to create multiple
protection domains in a single address space is ex-
plicitly addressed. Its effects on building efficient data
integrity domains are discussed in Liedtke’s later paper,
[19]. The use of segment registers for this purpose in
L4 is discussed in depth in [20], along with their impact
on performance.

Outside of the L*Linux project, segment registers
were used in [21] to implement efficient address space
multiplexing for fault domain isolation. Their tool, Pal-
ladium, used this method for user-level data integrity
and demonstrated the performance effectiveness by
building a CGI handler into a web server that runs
each CGI script in its own fault domain.

Finally, Native Client [3] makes use of segment
registers to absolve itself of sandboxing checks, which
allows for major performance improvements over the
standard PittSFleld techniques (approximately 5% vs.
20%).

E. The x64 Architecture

The x64 architecture [22], [23] might well be de-
scribed as “x86 with more virtual memory addresses”
as the instruction sets are very similar. However, there
are a few noteworthy architectural differences:

1) Because memory addresses are 64 bits wide,

x64 has architectural support for 64-bit integer
arithmetic.

2) x64 has 16 general-purpose registers, each of
which is 64 bits wide. x86 had only 8 general
purpose registers, each 32 bits wide. The first
8 general-purpose registers in x64 are just ex-
tensions of the x86 registers. The others, called
%$r8-%rl15 are new. The added general-purpose
registers make the idea of dedicated-register
sandboxing more palatable than it was on the
x86.

3) x86 memory segmentation is no longer used in
x64. Segment registers are treated as though their
value is always 0, even if values are assigned
to them. The exceptions to this rule are the
$FS and %GS segment registers, which play
an important role in Microsoft Windows’ kernel
threads implementation.> However, the behavior
of these registers is altered somewhat - values
in these registers are treated as base values for
address calculations, but no limit checking is
performed. As such, the use of x86 memory
segmentation as a shortcut to data integrity will
not work in the x64 world.

4) x64 introduces a new addressing mode, allowing
addresses to be specified with respect to the
instruction pointer. This mode is referred to as
$rip-relative addressing.

Modern processors implementing x64 also imple-
ment standard 32-bit x86 protected mode. The proces-
sors can freely switch between modes, and modes are
set per-process.

III. PROBLEMS IN PITTSFIELD

In the course of analyzing and extending the PittS-
Fleld techniques and tools [24], we discovered a
number of weaknesses in both the general CISC SFI
methods and in the PittSFIeld tool itself. We describe
each of these here. In section IV, we describe the ar-
chitecture of BakerSFleld and argue that it remediates
each of these issues.

A. Instruction Encoding Length isn’t Constant

In order to satisfy chunk alignment requirements,
it is necessary for the rewriting tool to have a good
understanding of the lengths of instructions as they
will be encoded by the assembler. The PittSFleld tool

2See http://en.wikipedia.org/wiki/X86-64 and

http://msdn.microsoft.com/en-us/magazine/cc300794.aspx

enumerates the lengths of all allowed instructions in
a table, allowing these lengths to be looked up. In
addition to a lack of generality, this solution can
produce incorrect results.

In PittSFIeld, both the rewriting of assembly code
to include sandboxing checks and the alignment of
code are done in a single pass from top to bottom
which considers only one instruction plus any state
accumulated from prior instructions. This ensures that
rewriting scales well with program size; this method
runs asymptotically in linear time. Unfortunately, it
isn’t possible to make a complete determination of
instruction size in this way. For example, instructions
that include references to memory offset by the cur-
rent instruction can have their offsets represented in
different sizes (x86 supports 8-, 16-, and 32-bit offsets,
although PittSFleld bounds allowable offsets in all
cases to less than 2'6). It is not possible to know the
required size of such an offset if the offset would point
to an instruction that the rewriter has not yet reached.
Additionally, PittSFleld does not check whether the
increased code size due to the insertion of additional
dynamic check instructions will change the size of
instructions it has already processed or the size of a
backwards offset (i.e. one pointing to an instruction it
has already processed).

This is particularly important for branches, which
are often addressed in just such a relative manner.
Because proper code alignment assumes a particular
size for relative branches, improperly aligned code can
result when the insertion of extra code or alignment
directives cause the target of a branch to move away
from the branch itself, thus causing the encoding of
the branch to grow.

B. Alignment isn’t Top-to-Bottom

It is tempting to fix the above problem by separating
the insertion of sandboxing checks from the align-
ment of the final, rewritten assembly code. However,
alignment itself can also cause code size to increase
because branch offsets may grow. One could repeat
the alignment stage, noting that, in the worst case, one
would only have to re-align the file as many times as
there are ambiguously-sized instructions.

We thus come to the conclusion that the problem of
aligning x86 instructions according to the CISC SFI
rules does not admit a straightforward top-to-bottom
solution. FEither it is necessary to look ahead and

behind when computing alignment, or it is necessary
to take multiple passes. BakerSFleld takes the second
approach, adjusting alignment to be an idempotent
function and iterating until a fixed point is reached.
This solution is described in Section IV-C.

C. Writes Can Escape Dynamic Checks

During the verification stage, operations that might
weaken the sandboxing invariants trigger conditions
which propagate forward and are not allowed to reach
a jump instruction. However, this solution is not fully
context-sensitive. A value which is safe in one context
may not be in another. Thus, in order to assure that
sandboxing checks actually apply to the instructions
that they are intended for, it is necessary either to
strengthen the required sandboxing invariants or to
strengthen the verification analysis.

For example, it is possible in the PittSFleld model
to jump via the reserved register $ebx directly to an
instruction which performs an indirect memory write,
also through %$ebx. Since the value in $ebx is an
address in the code section, it is out of bounds for the
write. If there is no hardware memory protection in
place, the write will succeed, allowing self-modifying
code, which violates the SFI model’s security. PittS-
Fleld solves this problem by attempting to keep track
of the strength of various sub-invariants in the verifier.
However, this makes the verifier brittle with respect to
the tracking of these invariants, the semantics of the
underlying instruction set, and the state of memory
protection in the virtual memory subsystem prior to
loading. It is notable that [1] avoid this issue by
using separate dedicated registers for code and data
sandboxing, which is unappealing on the x86 due to
the paucity of general-purpose registers.

This method could also be used to subvert the ret
instruction, allowing an arbitrary transfer of control to
escape the sandbox. Such a case is shown in Figure 1.
The more general problem is exhibited in Figure 2.

D. Verification

The PittSFIeld verifier is implemented essentially as
a finite-state machine which carries information about
the safety of particular instructions forward, failing
either if an unsafe combination of states is reached
or if a safe combination of states would unsafely
be carried into a new context, such as via a jump.
This design has several advantages: it’s very simple to

andl Ox10fffff0, (%esp)
.p2align
.Ltarget:

ret

pushl Soutside_address
Jmp .Ltarget

Figure 1. An example of a dangerous instruction sequence allowed
by the PittSFIeld model. In order to fix this, it is necessary to ensure
that sandboxing checks and the instructions they protect inhabit the
same chunk. The ”. Ltarget :” label is a notational convenience.

Sandbox
Check

Chunk boundary

Figure 2. A code layout that PittSFleld tries to prevent, but fails
to implement correctly.

implement and analyze and it fails fast when presented
with unknown states (such as unknown instructions or
unknown argument configurations for a given instruc-
tion). However, despite the fact that [25] provide a
formal proof of the validity of their method, we found
a number of alarming implementation vulnerabilities
in the verifier. For example, we discovered that the
PittSFleld verifier was decoding 3-argument operands
not as operandl, operand2, operand3, but as
operandl, operand2, operandl.

This is a classic example of a specification-
implementation correspondence gap. We note that it
would be useful to have a formal proof of the validity
of an SFI verifier. However, if such a proof were to
avoid issues such as these, it would require at least
the formal semantics of all memory and control-flow
related instructions in the x86 architecture, and the
formal verification should correspond to the actual
verifier implementation (e.g., by using a model checker
for C programs or by rewriting the core verification
functions in a language more suitable for reasoning,
such as Coq).

IV. SYSTEM ARCHITECTURE

BakerSFleld consists of two major components: a
code generation tool chain that generates code com-

pliant with our model and a special loader and load-
time verifier for checking our safety invariants. The
first of these takes in the assembly code generated by
an unmodified compiler and rewrites it to comply with
our invariants before assembling it with an unmodified
assembler. Although its correctness is important for
generating valid, usable sandboxed modules, it is not
critical to the security of the system. The second of
these constitutes a runtime environment for sandboxed
modules. It constitutes the whole of the trusted com-
puting base in our architecture.

The BakerSFleld system supports confinement of
memory writes and control transfers, both direct and
indirect. It does not, however, sandbox memory reads,
which would impose significantly higher overhead. Be-
cause reads are far more common and far less danger-
ous than either writes or control flow instructions, most
other work on sandboxing has also made this trade-off
[11, [2], [3]. The code transformation tool chain will
accept valid AT&T/GNU Assembler syntax x86 or x64
assembly language and can in principle be run on any
platform which supports Perl. A major advantage of the
assembly language rewriting paradigm for sandboxing
is that any source of x64 assembly language can be
sandboxed, not just the output of GCC — unlike
competing approaches that require the use of a specific
tool chain. However, a significant portion of our code
building infrastructure is suited specifically to Linux
or depends on the GNU Binutils packages.

Figure 3 gives an overview of the BakerSFleld
architecture.

A. Confinement Architecture

Sandboxed modules are confined to two regions in
memory: the code sandbox and the data sandbox. We
follow [1], [24], and [3] in choosing regions whose size
is a power of two and whose start address is aligned to
that same power, which allows addresses to be checked
for compliance using only bit operations, generally one
and and one or instruction.

In the current implementation, we have performed
all our work with 16 megabyte sandboxes stretch-
ing from 0x10000000-0x10ffffff (Code) and
0x20000000-0x20f£f£££ff, though this choice was
somewhat arbitrarily made, and the system supports
easily choosing the sandbox size to support much
larger memory regions.

Code Generation

Untrusted
Source
Code (C)

Assembly
Source
Code

Assembly
Source
Code w/
dynamic
checks

Fully-
sandboxed
Assembly
Source
Code

Assemble with gas

Untrusted
Object
Code (x64)

Annotated
Object
Code

Loading, :

Disassembly,
Decoding

! |

The BakerSFleld system architecture

Figure 3.

We use guard pages both above and below our
code and data regions. This enables us to avoid some
memory reference checking. Any register which is
known to hold a value which is inside the sandbox
can be referenced safely via an offset, so long as
the offset is not larger than the size of the guard
region. Guard regions are implemented using operating
system memory protections, so any incorrect reference
to memory outside the sandbox will generate a memory
protection in the operating system, causing the process
to be terminated.

The key insight in PittSFleld is that it is possible
to sandbox instructions in architectures with variable-
length instructions by artificially imposing alignment
constraints. To do this, PittSFleld groups instructions
into chunks with size (in bytes) and starting address
alignment equal to a fixed power of two. BakerSFleld
also employs this method. Chunks which cannot be
filled entirely with instructions are padded with no-
op instructions so that no instruction crosses a chunk
boundary. Then we require that all control flow target
the beginning of some chunk, a property which can be
checked with bit operations as with addresses above.
This requires both checking control flow instructions
for compliance and aligning instructions which are or
might be the target of a control flow instruction.

call instructions are moved by the same no-op

Code Validation

Verified
Object
Code

padding so that they occur only at the end of a chunk,
ensuring that the return address from a call is aligned
to the start of the next chunk. Unconditional jumps
must be the last real instruction in their chunk, meaning
they must either end their chunk or only be followed
by no-ops inserted during alignment. Otherwise, the
alignment rules could hide certain instructions in a
chunk behind a jump, causing those instructions to
be dark (i.e. never executable). We assume as an
optimization that most jump targets will be identified
by a label, and as such do not start new chunks for
conditional branches.

For efficiency, padding is done via variable-length
no-op instructions, so only a single no-op need be in-
serted in any given chunk. McCamant and Morrisett [2]
found that no-op overhead from padding represented a
significant part of the overall sandboxing overhead.

The layout of memory in our system is illustrated in
Figure 4.

Notably, we must be careful that the set of instruc-
tions validated and the set of reachable instructions in
execution are the same. These conditions imply that the
provided binary can be statically disassembled (more
specifically, they imply that execution is constrained to
the static disassembly of the binary which is produced
during analysis). This is important: a common code
obfuscation technique is to cause a jump into what

| Memorz Addresses)

Branch target

Call instruction

Branch instruction

Figure 4. The organization of memory in BakerSFleld. Execution is constrained to code in the ”Code” section while memory writes are
constrained to the ”"Data” section. Guard pages are used to enable optimizations for fuzzy checking of memory offsets.

appears to be the middle of another instruction in
order to cause unexpected behavior. However, because
disassembly of each instruction chunk always proceeds
from the start of the chunk to the end, because no
instruction bridges a chunk boundary, and because
all control flow can only target the beginning of any
chunk, we know that the set of validated chunks is also
the set of reachable chunks in execution.

Static checking is straightforward, except for the
caveat given above. More difficult is dynamic check-
ing of indirect memory references. BakerSFleld uses
PittSFleld-style dynamic checks, reserving a register
(%rbx) for sandboxing. The effective address of any
potentially dangerous memory reference, whether a
write or a jump, is loaded in to the dedicated sandbox-
ing register using a lea instruction. Then the address
is cleaned, using an and instruction to clear high-
order address bits that do not match the address of
the relevant section and an or instruction to set the
high order bits of the section address.

Here, we use the principle of “ensure, don’t check”
[2], which says that instead of terminating a program
with an error report if non-compliant behavior is de-
tected, we can simply force an unsafe action to become
an action which complies with the security policy. It is

much more efficient simply to force memory addresses
to be compliant than it is to determine whether they
are compliant and generate an explicit error if they
are not. In this way, correct programs are unaffected
by the checks, but incorrect, non-compliant, or gen-
erally malicious programs may behave in unusual or
unexpected ways. Because the programs are confined,
however, this behavior cannot have side effects on the
system, and can only negatively affect the bad code
which generated it. This optimization is also included
in [1] and [3].

As an optimization, we also follow PittSFleld in
treating the registers $rsp and $rbp as usually sand-
boxed. These registers may be copied from one to
another without triggering additional dynamic checks.
Small offsets from these registers are also allowed
without checks. $rbp is re-checked whenever it is re-
written (i.e. a value is loaded from memory or another
register) and before jumps if it is considered dirty.
$rsp is treated similarly. However, because $rsp is
frequently modified, small modifications to this register
(less than a threshold depending on sandbox size and
guard page size) are counted, and a fixed number of
small changes are allowed before new dynamic checks
are triggered. $rsp is also checked when it is re-

loaded or before a jump if it has been modified since
the last check and is dirty.

We alter the PittSFIeld structure slightly by requiring
that dynamic check instructions be placed in the same
chunk as the potentially dangerous instruction they
are meant to sanitize. At the cost of some minimal
code size overhead, this technique allows us to relax
conditions in the PittSFleld verifier which require that
bad state (e.g. the modification of a value in rbp)
be remediated prior to a jump. In this case, unsafe
instructions cannot be targeted directly by jumps, since
any instruction which must be preceded by a check will
be after the check in any given chunk.

In order to provide the functionality of the C library
within the sandbox, we provide the modified sandbox-
friendly library from the PittSFIeld project, with minor
updates to retain compatibility with the newer Linux
build tool chain. Currently, stub functions containing
trampolines to outside helper function are installed for
each function in the library at the base of the sandbox’s
code region, just above a small entry function. These
functions can be called to provide access to the real
C library functions outside the sandbox. The set of
available functions can be tailored to the needs of the
confined application and the security policy required.
In accordance with the principle of least privilege, it
is also advisable to only install those stub functions in
the intersection of the set of functions allowed by the
security policy and the set of functions actually called
by the confined code. This determination could easily
be made at compile time, and the BakerSFleld tool
has full support for installing only those stub functions
which are relevant to a particular guest module.

B. Threat Model and SFI Invariants

We adopt the standard SFI threat model used by [1]
but more carefully articulated in [2]. In general, compi-
lation and code rewriting are done by an untrusted code
producer. The safety policy is enforced by a separate
verifier which is part of the runtime environment. In
this way, the verifier can ensure:

o The code that is loaded and verified is the code

that is executed.

e Only code which is properly verified is allowed

to execute.
We expect the verifier to be able to take in arbitrary
binary object files and only to allow execution if the
input binary complies with the safety policy. Further,

so long as they pass verification, sandboxed modules
may exhibit arbitrary behavior, including executing
any reachable instruction block in the validated code
segment, using available system calls, and providing
bad or incorrectly formatted instructions.

Our safety policies are simple and verification can
be inferred directly from assembled code without the
need for debugging or symbol-table information. We
take inspiration from the safety policies in [2] and [3],
but we modify some constraints as described above.
The verifier checks the following invariants:

1) All direct memory references lie within the
bounds of the data section.

2) All direct control transfers target properly
aligned addresses within the code section.

3) All indirect writes and indirect control transfers
are grouped with a valid dynamic safety check
which tests:

o For indirect writes, whether the write lies
within the data section.

e For indirect control transfer, whether the
transfer targets an address in the code section
and whether that address is aligned to the
start of an instruction chunk.

4) No instruction or instruction group crosses a
chunk boundary.

5) All control transfer instructions are properly
aligned:

e All call instructions occur at the end of
their respective chunks.

o All unconditional jumps either end their
chunks or are only followed by no-op in-
structions, to prevent the possibility of align-
ment rules creating “dark” instructions.

o All jump targets are aligned to the beginning
of a chunk.

In general, these safety properties are not tractable to
compute. Instead, BakerSFleld and other SFI systems
re-write code to make verification simple by making
these properties manifest. We trade tractable verifi-
cation for one-sided error: if a program is accepted,
then it preserves these invariants and is safe to run.
However, we may reject some programs unnecessarily
if their safety is not sufficiently easy to determine by
our simple finite-state verification technique, described
below. Still, given that completeness in deciding such a
property is impossible, trading some completeness for

efficiency while preserving soundness is a reasonable
compromise.

Note too that these invariants explicitly disallow self-
modifying code, and in fact also guarantee the property
that the instructions disassembled and verified are the
same instructions available on any execution path.

C. Compliant Code Generation

BakerSFleld is capable of generating object code
which complies with the above safety invariants by
interposing a code transformation tool in the standard
GNU code generation tool chain. Figure 3 shows the
BakerSFleld compiler workflow.

Code is first compiled to assembly source by a
standard, unmodified compiler. We used GNU GCC,
but in principle this is not necessary. At present,
we support only AT&T/GNU Assembler syntax in
our code transformation tool. The rewriting tool is
implemented in Perl, and is thus highly portable. It
consists of three phases: a simple pass which unrolls
any string instructions present in the code, a rewriting
tool which inserts the required sandboxing checks, and
an alignment tool which generates code satisfying the
BakerSFleld alignment rules.

Code is then fed in to a rewriting tool, implemented
as approximately 300 lines of Perl. This rewriting
tool inserts all of the dynamic checks necessary for
sandboxing as well as hints to the alignment tool about
how to group instructions when instructions and their
checks need to inhabit the same chunks. All of the
optimizations which involve changing runtime checks
are also implemented in this phase.

Next, the code is fed into an alignment tool, which
generates code that satisfies the BakerSFleld alignment
rules. This code constitutes BakerSFleld-compliant as-
sembly source, ready to be assembled by a standard
assembler. The alignment tool is implemented as ap-
proximately 500 lines of Perl.

Alignment of x86 and x64 code is a finicky problem.
In order to properly determine when to start a new
chunk or how to place a call exactly at the end
of a chunk, it is necessary to know with precision
the length of every instruction’s encoding. x86 and
x64 encodings are extremely complicated, with single
instructions ranging from 1 to 15 bytes in length.
The same instruction may be valid with and without
certain optional prefixes, and the processor may ignore
redundant optional prefixes. It may also be impossible

to know in advance how large an instruction is. For
example, branches which target labeled offsets from a
register (rather than absolute offsets) may be encoded
in 2 bytes: a 1-byte opcode plus a 1-byte displacement
if the displacement is absolutely less than 128 bytes
(displacements in x86/x64 are signed). But it may also
be encoded as a 5-byte object: a 1 byte opcode plus a
4-byte displacement (there are no 64-bit displacements
in x64). To complicate the situation even further, align-
ment may cause the target of a branch to move beyond
the magical 128-byte limit, so it is not possible simply
to compute instruction lengths prior to alignment.
BakerSFleld uses a simple, highly general solution
to this problem which leverages standard tools. We
have implemented alignment as an idempotent func-
tion.. We can iteratively re-align the code if changes
might have changed our view of the information nec-
essary to compute the alignment. However, if apply-
ing our alignment twice produces the same output
as applying it once, we know we have successfully
computed a fixed point of the alignment function.
Thus, we perform the following loop. Say the input is
Code 49 and the alignment approximation function is
A(Codean, Listingy). Then beginning with N = 0:

1) Compute the lengths of all instructions and the
result of any assembler directives which could
affect alignment. This is Listingy.

2) Compute the code alignment based on this infor-
mation, C'ode g(n1) = A(Codean, Listingy).

3) Check if the computed alignment matches the
input, Codey(ny1) = Codean. If it does, the
function A had the effect of the identity, and the
code must be properly aligned. If it does not,
start over at step 1 with the input Code oy 1)-

This leaves us with the problem of computing
each Listingy, which describes the correspondence
between the input file and the length of the encoding
of each instruction and alignment directive. Accurately
computing this information in full generality is approx-
imately as complex as writing an assembler. In order
to solve this problem efficiently, we leveraged existing
tools. GAS will generate a listing of its output, which
describes exactly the correspondence on a line-for-line
basis between input and output. As an added benefit,
the listing will provide extra information, such as the
address of each instruction (from which we compute
its length) and the encoding itself, which is useful for

debugging.

Any given input file may have many valid align-
ments. In practice, our fixed point technique computes
a reasonable alignment. To guarantee termination, we
never remove no-ops, so instructions can only ever
grow in size. We are also aggressive about aligning
to new chunks. However, these issues do not seem to
affect code size adversely and we usually converge
to the idempotent alignment function within about 4
rounds of approximation. Because each pass of the
alignment tool is implemented as a top-to-bottom pass,
it is possible that sub-optimal choices are taken early
in the approximation. There is currently no method to
correct these once they happen. One improvement is to
provide the compiler with some alignment directives so
that the distance between the raw, rewritten code and
the compliant aligned code is minimized.

Once the code has been properly aligned, it can be
assembled with the standard GNU Assembler for x64.

D. Code Validation

Validation of code in the BakerSFleld system is
done at load-time. The basic workflow of loading,
validation, and execution is shown in Figure 3. The
trusted loader-verifier constitutes the entire runtime
environment for a sandboxed module and thus the
entire trusted computing base for the system. It is
implemented in approximately 2800 lines of C, of
which approximately 2000 are devoted to verification.
Of those, most are simply involved in instruction
decoding; the core verification section is implemented
in approximately 600 lines of C.

The verifier is implemented essentially as a finite
state machine, where states are labeled by a combina-
tion of conditions about the SFI invariants described
above. This state machine passes over the object code
to be verified from top to bottom, computing for each
instruction a conservative property which describes an
estimate of the state that the processor will be in when
it reaches that instruction. State transitions are per
instruction and also depend on alignment. Additionally,
conditions which would strengthen any of the SFI
invariants described above (such as a sandboxing check
instruction or group of instructions) persist to the end
of a chunk boundary. Any conditions which would
weaken such an invariant persist across chunk bound-
aries until they are remedied. If an unsafe condition

reaches a control flow instruction, such as a jmp, Jcc,
call or ret, verification will fail.

Verification relies upon disassembly. As mentioned
above, the SFI invariants guarantee that the instructions
which are disassembled and verified are the instruc-
tions which will be executed on any execution path.
However, it is still necessary to reliably disassemble
the instructions, at least enough to know whether they
affect the status conditions used by the verifier. BakerS-
Fleld relies on an external disassembler, Udis86 [26].
PittSFIeld by contrast made use of a library called
libdisasm [27], which did not support x64.

V. OPTIMIZATIONS

We describe here several optimizations implemented
in our tool. Beyond those described in Section IV,
PittSFIeld implements two sandboxing-check opti-
mizations which are retained in BakerSFleld: single
instruction address operations and efficient returns.

Ordinarily, in sandboxing an address, it would be
necessary to use an and instruction to clear some bits
and an or instruction to set some others. However,
we follow PittSFleld’s lead and cleverly arrange our
sandbox regions so that we can reduce this calculation
to a single instruction. We choose the code and data
regions such that their base address has only a single
bit set (as mentioned, the default code and data regions
in BakerSFleld are 0x10000000 and 0x20000000
respectively). Further, we reserve as a guard region the
region starting at address 0x0 which is the same size
as the code and data regions.?> Then it is possible to
use a single and instruction for sandboxing, since this
instruction will clear all of the necessary bits, except
possibly the one which needs to be set. Then either
the sandboxed address was correct, that bit is set, and
all continues normally, or the address was incorrect (if,
for example, it was from incorrect or malicious code),
and the memory reference will be trapped to the guard
region, which will generate an error. McCamant and
Morrisett [2] found that this optimization decreased
their overhead by approximately 10%.

In order to take advantage of modern branch predic-
tion hardware, it is useful to implement procedure re-
turns not as indirect jumps through registers (as indirect
call instructions are implemented in BakerSFleld)

3There is no reason the code and data regions need to be the
same size. If they are not, we simply reserve from zero the region
which is the size of the larger sandbox.

but instead using the ret instruction. To accomplish
this, BakerSFIeld modifies the return address on the top
of the stack just before the ret instruction, as if that
address were stored in a register. McCamant and Mor-
risett [2] found that this optimization reduced worse
case overhead by over 50% and standard overhead by
about 25%.

It is worth noting that a highly-efficient optimization
is available for sandboxing in x64 entirely for free.
Using the new %rip-relative addressing mode, it is
possible to get integrity for many memory references,
both for control flow and data writes. Because the veri-
fier can resolve $rip-relative addresses fully statically
(once the file is loaded, the verifier knows exactly the
value of $rip for every instruction), it is not necessary
to provide dynamic checks for such instructions. Using
the —fpic option to GCC, it is possible to make a
large number of the memory references in a program
obey this paradigm. Optimized code from GCC at
levels above —0O1 also make use of %rip-relative
addressing.

VI. PERFORMANCE RESULTS

We ran our tool on the microbenchmark suite de-
signed for PittSFleld. It does very well, with perfor-
mance overheads between 2-75%. Overall, our average
overhead was 20.4%, which compares favorably with
the 21% average overhead in PittSFleld, particularly
when one considers that our average is significantly
worsened by poor performance in the gz ip benchmark
and that the PittSFleld benchmarks were taken at
GCC optimization level —03 while the BakerSFIeld
benchmarks were built at —~02 due to a compatibility
issue unresolved at the time of this writing.

All benchmarks were run on a Dell Optiplex
GX620, with a 3.2 GHz Pentium 4 CPU, 1 GB
of RAM, 80 GB disk, running Ubuntu Linux
8.04, with the Linux 2.6.24 kernel, and GCC
4.2.4 The benchmarks were compiled with -g
—ffast-math —-fno-stack-protector
-02 —fno-schedule-insn2 --fixed-rbx
—-fno-omit-frame-pointer, and the
C library (from PittSFleld) compiled
with -03 —-fno-stack-protector
—fno-schedule-insns2 —--fixed-rbx
—-fno-omit-frame-pointer. The benchmark
programs are as follows:

A-42 simply returns the constant value 42. It’s

primary use is to measure the size of the

C library, and its sandboxing overhead. The

runtime performance of it is dominated by

the load-time verification of the sandboxed C

library.

fib naively (i.e., via recursion) computes the 34"
number in the Fibonacci sequence. This is a
good “worst-case” for indirect control flow,
as the recursive function requires a significant
number of ret instructions.

factor computes a nontrivial factorization of a 58-bit
composite number using the wheel factoriza-
tion algorithm. This benchmark is heavy on
integer arithmetic.

bzip2 is the an implementation of the Seward bzip2
compression algorithm, meant to stress mem-
ory performance.

gzip is the standard GNU compression utility
based on the DEFLATE algorithm.
md5 computes the md5 hash of a pre-determined
16-byte buffer in memory.
A. Code Size

Code size benchmarks are shown in Table I.

Code size blowup for these microbenchmarks is
strongly dominated by the inclusion of the entire
replacement C library in the resultant object file. Thus,
the A\-42 benchmark gives us a good idea of this
overhead, about 10,500 bytes. For larger programs
such as gzip, this overhead is dominated by the size
overhead of the program itself. However, because the
replacement C library consists mostly of calls to helper
functions which wrap the real libc implementations
outside the sandbox, the overhead is very high. For
example, controlling for libc overhead in the gzip
benchmark yields a code size blowup ratio of approx-
imately 1.43.

Still, these ratios compare very favorably with those
given in [2]. Since these files have not been modified
from the PittSFleld, it is most likely that the favorable
size overhead gains are due to the more aggressive
use of memory offset references via %rip-relative
addressing, which lead to shorter instructions. Our
worst-case blowup, gzip, has identical performance to
the PittSFIeld version, however.

Program lambda-42 fib factor bzip2 gzip md5

Unsandboxed 18923 19039 19235 83452 64578 21804

Sandboxed 29664 29840 30112 137840 106740 33608

Ratio 1.57 1.57 1.57 1.65 1.65 1.54
Table I

CODE SIZE (IN BYTES; TEXT SEGMENT ONLY) FOR SANDBOXED VS. UNSANDBOXED BENCHMARKS

Program lambda-42 factor bzip2 gzip md5

Unsandboxed 0 10.04 1.71 764 186 5.15

Sandboxed 0.015 10.39 1.75 8.19 324 5091

Ratio 00 1.04 1.02 1.07 174 1.15
Table 11

AVERAGE EXECUTION TIME IN SECONDS FOR SANDBOXED VS. UNSANDBOXED BENCHMARKS

B. Execution Overhead

Execution overhead benchmarks are shown in Ta-
ble II.

Execution overhead was calculated by taking 10 runs
of the code and measuring using the Linux time
utility, then taking descriptive statistics. The standard
deviation and variance were in all cases very small,
only a few milliseconds, and are thus insignificant.

These numbers compare favorably on a pairwise
basis with the PittSFIeld numbers with the exception
of gzip, which we measured at 74% overhead and [2]
measured at 17% overhead. Leaving out this bench-
mark yields an average overhead of only 7%, compared
to an average of approximately 24% for the same
benchmarks in [2].

VII. CONCLUSION

BakerSFleld brings the advantages of Software Fault
Isolation to the x64 instruction set architecture. It also
offers a much cleaner architecture than PittSFleld by
separating code rewriting (for memory safety) and
code re-alignment (for control flow safety). For most
applications, the overhead is very reasonable. Indeed,
the overhead of SFI on modern superscalar processors
seems to be much lower than on older x86 processors.

Future work will proceed along three major axes:

o Engineering improvements to the system, to make
it easier to use directly and to make it support the
integration of SFI domains into actual programs.
Additionally, it will be useful to explore the
various benchmarks that have been and can be
taken, to fully understand the reasons for the lower
64-bit overhead.

o Verification of the verifier. We wish to provide
a provably-sound verifier which can be used for
high-assurance confinement. Note that this pro-
vides a way to leverage verified codebases by
providing safe (well, at least confined) unverified
extensions. This allows for a system with compos-
able trust properties, even if some components are
not trustworthy.

« Novel applications of SFI. For example, SFI could
be used to provide a user-thread system that
includes memory safety guarantees. This could
be useful in engineering large pieces of software,
in which cheap cross-component communication
is important but isolation is also important. An
example might be browser tabs, which could be
managed by a trusted core thread but could be
isolated from each other in case one crashes.

ACKNOWLEDGMENT

This research was supported by the National Science
Foundation under Grant Number CNS-0524111.

REFERENCES

[1] R. Wahbe, S. Lucco, T. Anderson, and S. Graham,
“Efficient software-based fault isolation,” in Proceed-
ings of the fourteenth ACM symposium on Operating
systems principles. ACM, 1994, p. 216.

[2] S. McCamant and G. Morrisett, “Evaluating SFI for a
CISC architecture,” in 15th USENIX Security Sympo-
sium, 2006, pp. 209-224.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar,
“Native client: A sandbox for portable, untrusted x86
native code,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2009.

G. Necula and P. Lee, “Safe kernel extensions without
run-time checking,” ACM SIGOPS Operating Systems
Review, vol. 30, no. si, pp. 229-243, 1996.

G. Morrisett, D. Walker, K.
N. Glew, “From system F to
language,” ACM Transactions
Languages and Systems, vol. 21, mno. 3,
pp- 527-568, May 1999. [Online]. Available:
http://www.acm.org/pubs/articles/journals/toplas/
1999-21-3/p527-morrisett/p527-morrisett.pdf;http:
/lwww.acm.org/pubs/citations/journals/toplas/
1999-21-3/p527-morrisett/

Crary, and
typed assembly
on Programming

C. Small and M. Seltzer, “MiSFIT: Constructing safe
extensible systems,” IEEE concurrency, vol. 6, no. 3,
pp- 34-41, 1998.

M. Swift, S. Martin, H. Levy, and S. Eggers, “Nooks:
An architecture for reliable device drivers,” in Proceed-
ings of the 10th workshop on ACM SIGOPS European
workshop. ACM, 2002, p. 107.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow integrity: Principles, implementations,
and applications.” in Proceedings of the 12th ACM
conference on Computer and communications security.
ACM New York, NY, USA, 2005, pp. 340-353.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. Necula, “XFI: Software guards for system address
spaces,” in Proceedings of the 7th symposium on Op-

erating systems design and implementation. USENIX
Association, 2006, p. 88.

B. Ford and R. Cox, “Vx32: Lightweight, User-level
Sandboxing on the x86,” in 2008 USENIX Annual
Technical Converence, June 2008.

B. Ford, “VXA: A virtual architecture for durable
compressed archives,” in USENIX File and Storage
Technologies, December 2005.

J. Douceur, J. Elson, J. Howell, and J. Lorch, “Leverag-
ing legacy code to deploy desktop applications on the
web,” in Proceedings of the 2008 Symposium on Op-
erating System Design and Implementation, December
2008.

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield,
“Xen and the art of virtualization,” in Proceedings of
the nineteenth ACM symposium on Operating systems
principles. ACM, 2003, p. 177.

T. Lindholm and F. Yellin, Java(tm) Virtual Machine
Specification. Addison-Wesley Professional, 1999.

A. Kennedy and D. Syme, “Design and implementation
of generics for the .NET Common Language Runtime,”
in Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation.
ACM New York, NY, USA, 2001, pp. 1-12.

Crawford, J. and Gelsinger, P., “Programming the
80386, SYBEX Inc., 1987.

J. Liedtke, “Improving IPC by kernel design,” in ACM
Symposium on Operating Systems Principles: Proceed-
ings of the fourteenth ACM symposium on Operating
systems principles. Association for Computing Ma-
chinery, Inc, One Astor Plaza, 1515 Broadway, New
York, NY, 10036-5701, USA,, 1993.

——, “Improved address-space switching on Pentium
processors by transparently multiplexing user address
spaces.” GMDGerman National Research Center for
Information Technology, Sankt Augustin, Germany,
Tech. Rep. 933, Sept. 1995.

, “Onp-kernel construction,” in 15th ACM Sympo-
sium on Operating System Principles (SOSP). Cite-
seer, 1995.

H. Hértig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schonberg, “The performance of pu-kernel-based
systems,” in Proceedings of the sixteenth ACM sym-
posium on Operating systems principles. ACM New
York, NY, USA, 1997, pp. 66-77.

T. Chiueh, G. Venkitachalam, and P. Pradhan, “Inte-
grating segmentation and paging protection for safe,
efficient and transparent software extensions,” in ACM
Symposium on Operating Systems Principles: Proceed-
ings of the Seventeenth ACM Symposium on Operating
Systems Principles. Association for Computing Ma-
chinery, Inc, One Astor Plaza, 1515 Broadway, New
York, NY, 10036-5701, USA,, 1999.

AMDG64 Architecture Programmer’s Manual, Publica-
tion No. 24592-24594; Revision 3.14 ed., Advanced
Micro Devices, September 2007.

[23]

[24]

[25]

[26]

[27]

Intel 64 and IA-32 Architectures Software Developer’s
Manual, Order Number 253665-253669 ed., Intel Cor-
poration, September 2009.

McCamant, S. and Morrisett, G., “Efficient, Verifiable
Binary Sandboxing for a CISC Architecture,” MIT
Computer Science and Artificial Intelligence Labora-
tory, Tech. Rep. MIT-CSAIL-TR-30, 2006.

McCamant, S., “A Machine-Checked Saftety Proof for
a CISC-Compatible SFI Technique,” MIT Computer
Science and Artificial Intelligence Laboratory, Tech.
Rep. MIT-CSAIL-TR-2006-035, 2006.

Thampi, V. (2009) The Udis86 Disassembler Library
for x86 and x86-64. [Online]. Available: {http:
/fudis86.sourceforge.net/}

(2002) Libdisasm: x86 Disassembler Library. HCU
Linux Forum. [Online]. Available: {http://bastard.
sourceforge.net/libdisasm.html}

