
We’ve found an error in our paper. In the threshold signature scheme that we used, there are restrictions on
the threshold value. In particular if the key is shared over a degree t polynomial, then 2t+1 players (not t+1)
are required to to construct a signature. We’ve laid out how to fix it in this blog post and will be updating
the paper accordingly.
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ABSTRACT
The Bitcoin ecosystem has suffered frequent thefts and losses
affecting both businesses and individuals. The insider threat
faced by a business is particularly serious. Due to the irre-
versibility, automation, and pseudonymity of transactions,
Bitcoin currently lacks support for the sophisticated inter-
nal control systems deployed by modern businesses to deter
fraud.

We seek to bridge this gap. We show that a threshold-
signature scheme compatible with Bitcoin’s ECDSA signa-
tures can be used to enforce complex yet useful security
policies including: (1) shared control of a wallet, (2) secure
bookkeeping, a Bitcoin-specific form of accountability, (3)
secure delegation of authority, and (4) two-factor security
for personal wallets.

1. INTRODUCTION
Businesses that need to protect their assets from insider
threats must implement appropriate security measures. For
those businesses holding significant assets in Bitcoin and
other cryptocurrencies, it is important to translate existing
internal control paradigms to the Bitcoin world. Although
similar in functionality, Bitcoin transactions differ from tra-
ditional banking transactions in fundamental ways:

• Irreversibility. Once a Bitcoin transaction has been
broadcast and confirmed in the block chain, it is gen-
erally irreversible even if later shown to be fraudulent
(e.g., a stolen private key was used).

• Automation. Banking transactions beyond a certain
size typically require human action. Bitcoin transac-
tion of any size can be fully automated, authorized
only with a cryptographic signature.

• Pseudonymity. If traditional corporate assets are fraud-
ulently transferred, banks may be able to (or be legally
obligated to) assist in identifying the receiving account
owner. Bitcoin addresses are not required to be linked
to an offline identity.

These problems pose a daunting challenge for organizations
considering doing business in Bitcoin, making internal con-
trols both more important (due to irreversibility and pseudo-
nymity) and harder to implement (due to automation). These
problems are particularly acute for hot wallets, wherein the

private keys are stored on online devices. Businesses that
actively transact in Bitcoin must necessarily keep some of
their balance in hot wallets.

However, Bitcoin also presents a compelling opportunity as
controls which have traditionally been slow and required
a human in the loop can now be specified and enforced
cryptographically. In this work, we explore such possibil-
ities. Our starting point is to investigate ways to achieve
joint control of bitcoins, i.e., require multiple designated par-
ticipants to sign a transaction before it will be considered
valid.1 Joint control mitigates the risk of internal fraud as no
employee has the ability to single-handedly misappropriate
funds. Completing a fraudulent transaction would require
the collusion of multiple insiders.

We show that this can be accomplished using threshold sig-
natures. In a threshold signature scheme, the ability to con-
struct a signature is distributed among n players, each of
whom receives a share of the private signing key. The par-
ticipation of t or more of them is required to sign (for some
fixed t ≤ n). Thus a business can implement joint control of
a Bitcoin address by distributing shares of the private key
among multiple employees’ devices.

Bitcoin supports“multi-signature”transactions where at least
t of n keys must sign in order to spend bitcoins. This pro-
vides an alternate way to realize joint control, but this ap-
proach has undesirable impacts on anonymity and confiden-
tiality, as we explain in Section 3.2, as well as incurring
increased transaction sizes and therefore fees. Threshold
signatures look no different from single-key signatures and
thus avoid the shortcomings as of multi-signature transac-
tions. Threshold signatures applied to Bitcoin wallets can
be considered “stealth multi-signatures.”

Though little-known in either the cryptographic literature
or the Bitcoin community, it is possible to build an efficient
threshold scheme on top of Bitcoin’s default ECDSA sig-
nature algorithm[11, 21]. Our primary contribution is to
demonstrate that this construction can be deployed immedi-
ately and efficiently to protect Bitcoin transactions. We have
implemented threshold signatures for ECDSA and proven
compatibility with Bitcoin by successfully relaying a trans-
action authorized by a 9-out-of-12 threshold signature onto

1Here and throughout the paper, our discussion refers to
Bitcoin, but our results are equally applicable to the other
signature-based cryptocurrencies such as Litecoin.
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Bitcoin’s block chain. To the external world, the transaction
is indistinguishable from non-threshold transactions.

Second, we show how a single set of shares can enable joint
control of arbitrarily many Bitcoin addresses. These ad-
dresses can be generated on demand by the participants,
with no limit on the total number. We achieve this via a
novel cryptographic construction. This is a crucial capabil-
ity that allows us to apply security policies to wallets rather
than individual addresses in a practical manner.

Third, we define the properties of secure bookkeeping and se-
cure delegation and motivate their importance to corporate
security. We show how threshold signatures can be used in
sometimes non-obvious ways to realize these properties.

Fourth, we discuss various system design issues that arise for
any business that wants to implement a threshold-signature-
based access control system. We provide strategies and rec-
ommended practices to implement the system in a way that
is easily understood and maintained by non-expert users.

Finally, we highlight an application of our techniques to the
security of a personal Bitcoin wallet, rather than that of a
business. We show how threshold signatures can be used
to achieve two-factor security for wallets. Whereas in the
corporate application, we use threshold signatures to split
control among two or more people people, in the two-factor
security application, we use it to split control among two de-
vices. Rather than storing a private key on a single machine,
shares of the key are stored on two devices, say a desktop
computer and a smartphone. As neither device contains the
key, both devices need to cooperate to sign a transaction.
The user initiates a transaction on the desktop and then
approves it using the smartphone. Once approved, the two
devices engage in the threshold signature protocol and sign
the transaction. To steal bitcoins from a two-factor secure
wallet, an attacker would have to simultaneously compro-
mise both devices. We also include recovery options that
enable the user to regain control of her bitcoins if one of her
devices is stolen or compromised, or both devices are lost
(but not both controlled by the adversary).

Threshold signatures alone are not a complete security solu-
tion. They can and should be combined with system secu-
rity and network security measures, business processes and
accounting rules encoded in software, use of cold storage
when appropriate, and so on. Threshold signatures do seem
though to be an essential tool that has so far been missing
from the Bitcoin ecosystem.

2. BACKGROUND
2.1 Internal controls
Internal controls can be classified as preventive, detective,
and corrective [20, 23], or prevent-detect-recover [7]. Not all
controls are technical, and many can be applied to Bitcoin
assets without modification. Let us discuss the three classes
of controls and highlight those for which a Bitcoin-specific
solution is necessary.

Prevention: dual control. Two of the most common tech-
niques for fraud prevention are functional separation and
dual control. Both are ways of requiring two (or more) em-

ployees to co-operate to complete a financial transaction or
some other action.

1. Functional separation (series). Different employees are
involved at different points in the path of a transaction.
For instance, a manager may have the ability to decide
to purchase something, but the ability to transfer funds
resides with the purchasing department, and there may
be many such steps needed to complete the purchase
and receive goods [7].

2. Dual control (parallel). Here two or more employ-
ees must simultaneously sign off on a given transac-
tion. Our manager in the above example would not
be able to single-handedly approve a transaction, but
may need a second manager to sign off. Policies for
parallel control can take various and complex forms.
In a simple system, all employees are treated as equals
and some fixed number of employees are needed to ap-
prove a transaction. The number of employees needed
may depend on various factors such as the number of
bitcoins involved.

A more complex system may assign different ranks
to different employees. Complex policies can specify
different combinations of differently ranked employees
that are necessary to approve a transaction. To illus-
trate, consider a business in which there are two levels
of employees: managers and non-managers. An ex-
ample policy in this setting would allow the following
groups to independently sign off on transactions: (1)
any two managers (2) a single manager together with
two non-managers, or (3) 5 non-managers.

Functional separation is more of a business process prob-
lem than a technological one. Implementing functional sep-
aration over processes where money transfer happens via
Bitcoin is not much different than if they happened via tra-
ditional banking, and thus we will not have much to say
about these controls. We will focus on parallel controls as
the problem has a technological solution.

Detection: bookkeeping. A business may decide that it is
not cost efficient or simply impossible to prevent all fraud-
ulent transactions. This necessitates ways to detect fraud
after the fact with the aim of potentially recovering some of
the theft. Detective measures also serve an additional pur-
pose of evaluating the effectiveness of preventive controls.

A key component for detecting fraud is bookkeeping. Busi-
nesses need to keep accurate records of all of their assets.
Every transaction must be logged along with the identity of
the employee who enacted that transaction. These logs can
then be audited to detect fraudulent transactions.

Of course fraud will only be detected if all transactions are
logged accurately. If employees have the ability to alter the
logs to cover up unauthorized transactions, then they can
evade detection. Keeping with the principle of separation of
duties, double-entry bookkeeping is a ubiquitous technique.
In this system, every transaction is posted to two differ-
ent books, in one as a credit and in one as a debit. The
two books are kept by different people. Books are regularly



checked to ensure that they add to zero, or balance. A single
employee will not be able to alter both books, and thus a
fraudulent transaction requires multiple employees to coop-
erate. To detect collusion between employees, both regular
and and spontaneous audits are carried out [7].

Bitcoin offers possibilities for implementing the same separation-
of-duties bookkeeping principle, but in novel ways not found
in traditional systems. Since Bitcoin provides a secure trans-
action log (the block chain), could we perhaps cryptographi-
cally link the public block chain with internal, private double-
entry bookkeeping records so that the latter cannot be tam-
pered with without affecting the former?

Recovery. Once fraud has been detected, the business must
take corrective action to recover. In the recovery phase, Bit-
coin transactions deviate greatly from normal bank transac-
tions. In the traditional system, if fraud is detected quickly,
the victim can contact their bank and have the transaction
reversed. Even if some time has passed, legal measures could
be taken to coerce the bank to reverse the transaction. In the
Bitcoin protocol as it currently stands, this is not possible.
Transactions are irreversible; as soon as a valid transaction
is included in the block chain it cannot be undone even if it
is known to have been fraudulent.

For this reason, the prevent-detect-recover model is different
with Bitcoin than it is with traditional banking. More re-
sources must be spent on prevention, as the recovery options
are far more limited. Of course, fraud detection is still ex-
tremely valuable — employees can be held accountable for
theft, and even if recovery is not possible, detection helps
evaluate the preventive controls [20].

Delegation of authority. Internal controls are further
complicated by the practical need to for one employee to
delegate authority for transactions to another employee (or
a non-employee). For example, a manager may wish to
give her administrative assistant spending power over her
bank account or Bitcoin wallet while enforcing some policy.
The policy may specify acceptable purposes of expenditure,
spending limits, validity periods, and so forth. Not all dele-
gation policies may be algorithmically enforceable.

2.2 Bitcoin
Bitcoin is a decentralized digital currency [15]. Bitcoins are
assigned to addresses,2 which are simply the hash of a public
key. To transfer bitcoins from one address to another, a
transaction is constructed that specifies one or more input
addresses from which the funds are to be debited, and one or
more output addresses to which the funds are to be credited.
For each input address, the transaction contains a reference
to a previous transaction which contained this address as
an output address. In order for the transaction to be valid,
it must be signed by the private key associated with each
input address, and the funds in the referenced transactions
must not have already been spent[15, 5].

Each output of a transaction may only be referenced as the

2To be precise, bitcoins are assigned to (and redeemed from)
transactions and not addresses, but conceptually they can
be thought of as belonging to the addresses named in those
transactions.

input to a single subsequent transaction. It is thus necessary
to spend the entire output at once. It is often the case
that one only wishes to spend a part of the output that was
received in a previous transaction. This is accomplished by
means of a change address where one lists their own address
as an output of the transaction. So, for example, if Alice
received 5 bitcoins in a transaction and wants to transfer 3
of them to Bob, she constructs a transaction in which she
transfers 3 to Bob’s address and the remaining 2 to her own
change address.

While it is technically possible for the sender to include their
input address in the output, in practice, the change is gen-
erally sent to a newly generated addresses. The motivation
for generating new addresses is increased anonymity since
it makes it harder to track which addresses are owned by
which individuals.

Bitcoin wallets are a software abstraction which seamlessly
manage multiple addresses on behalf of a user. Users do
not deal with the low level details of their addresses. They
just see their total balance, and when they want to transfer
bitcoins to another address, they specify the amount to be
transferred. The wallet software chooses the input addresses
and change addresses and constructs the transaction. New
addresses can be generated at any point, and individual Bit-
coin users typically have many addresses. The standard Bit-
coin wallet implementation generates a new change address
for every transaction.

Separate from change addresses, businesses may wish to
maintain multiple addresses in their wallet for other rea-
sons. A frequent practice is to provide a fresh address every
time someone wishes to send bitcoins. Again, this increases
unlinkability between addresses.

Signed transactions are broadcast to the Bitcoin peer-to-
peer network. They are validated by miners who group
transactions together into blocks. Miners participate in a
distributed consensus protocol that collects these blocks into
a public ledger called the block chain.

Our treatment of transactions thus far has described what
a typical Bitcoin transaction looks like. However, Bitcoin
allows for far more complex transactions. Every transaction
contains a script that specifies how the transferred funds
may be redeemed. For a typical transaction, the script spec-
ifies that one who wants to spend the bitcoins must present a
public key that when hashed yields the output address, and
they must sign the new transaction with the corresponding
private key. A transaction can include a script that specifies
complex series of rules that need to be enforced in order for
the bitcoins to be spent.

While the original Bitcoin paper does not specify the signa-
ture algorithm to be used, the current implementation uses
the Elliptic Curve Digital Signature Algorithm (ECDSA)
over the NIST P-256 curve [5, 2].

2.3 Secret sharing and threshold cryptogra-
phy

Threshold secret sharing is a way to split a secret value into
shares that can be given to different participants, or players,



with two properties: (1) any subset of shares can reconstruct
the secret, as long as the size of the subset equals or exceeds a
specified threshold (2) any subset of shares smaller than this
threshold together yields no information about the secret.
In the most popular scheme, due to Shamir, the secret can
be encoded as a degree t−1 polynomial and a random point
on the polynomial given to each of n players, any t of which
can be used to precisely reconstruct the polynomial using
Lagrange interpolation [16].

Secret sharing schemes are fundamentally one-time use in
that once the secret is reconstructed, it is known to those
who participated in reconstructing it. A more general ap-
proach is threshold cryptography, whereby a sufficient quo-
rum of participants can agree to use a secret to execute a
cryptographic computation without necessarily reconstruct-
ing the secret in the process. A (t, n)-threshold signature
scheme distributes signing power to n players. Any group of
at least t players can generate a signature, whereas a group
of less than t cannot.

A key property of threshold signatures is that the private
key need not ever be reconstructed. Even after repeated
signing, nobody learns any information about the private
key that would allow them to produce signatures without a
threshold sized group.

ECDSA threshold signatures
Below, we first present the usual ECDSA signature gener-
ation scheme [13], and then the threshold scheme due to
[11].

Standard ECDSA signature generation
The inputs are the base point G of order n, the private d,
and the message to be signed, m. For the values of the
domain parameters used in Bitcoin, see [3].

1. Compute e =SHA-1(m). Convert e to an integer using
the method in ANSI X9.62.

2. Select an integer k such that 1 ≤ k ≤ n− 1

3. Compute (x1, y1) = kG.

4. Convert x1 to an integer using the method in ANSI
X9.62. Compute r = x1 mod n. If r = 0, return to
step 2.

5. Compute s = k−1(e+ dr) mod n. If s = 0, return to
step 2.

6. The signature for m using the key d is the pair (r, s).

Threshold ECDSA signature generation
The steps in the threshold scheme parallel the regular scheme.
The key difference is that the players compute on shares, and
they only interpolate values that do not leak information
about the private key. The only value that the players re-
cover that depends on the shares of d is s, which is part of the
signature (and this is publicized even in the non-threshold
scheme). In particular, k and k−1 are never interpolated .
This is important — given k and the signature (r, s), it is
trivial to recover d. Even though k ·G is known to players,

the presumed hardness of the discrete logarithm problem for
elliptic curves maintains that recovering k is intractable.

In the setup phase, a dealer D distributes shares of private
key d on a random polynomial f of degree t − 1 such that
d = f(0). There are n players, each having a unique index i,
such that 1 ≤ i ≤ n. Player i is given the share f(i) . Once
this is complete, players can sign message m as follows:

1. Players compute e = SHA-1(m). Convert e to an inte-
ger using the method in ANSI X9.62. As m is public,
this is no different from before.

2. Players run a joint random secret sharing (JRSS) pro-
tocol (see [11] for details) to share a random value k
mod n on a polynomial g of degree t. Player i ends up
with share g(i).

3. Player i computes the value of the Lagrange basis poly-
nomial at 0,

bi(0) =
∏

j 6=i,j∈B

j

j − i

B is the set of indices of the t+ 1 participants.

4. Player i computes yi = biki and broadcasts Vi = yiG.

5. Players can now compute

(x1, y1) = kG =
∑
i∈B

Vi

.

6. Convert x1 to an integer using the method in ANSI
X9.62. Compute r = x1 mod n. If r = 0, return to
step 2.

7. Players run the secure reciprocal protocol given in [11]
(together with the secure degree reduction protocol in
[9]) using their shares of k to compute shares of k−1

on a degree t polynomial.

8. Players now compute shares of w = dk−1 over a degree
t polynomial by multiplying their shares of d and k−1

and running the secure degree reduction protocol given
in [9].

9. Each player now computes the share

si = k−1
i ·e+r ·wi = k−1

i ·e+r(di ·k−1
i ) = k−1

i (e+dir)

They run secure degree reduction to reduce the degree
of the polynomial sharing s back to t.

10. Players can now interpolate their shares of s to recover
s = k−1(e+ dr). If s = 0, return to step 2.

11. The signature for m using key d is the pair (r, s).

3. SECURE PROTOCOLS
Threshold signatures can be used as a primitive to build
various secure protocols. In this section, we will describe
four such protools. But first we discuss the threat model.



Adversary Hot wallet Cold wallet

Insider
Vulnerable by

default; our methods
are necessary

Reduces to physical
security by default;

our methods can help

External
(network)

Reduces to network
security by default;

our methods can help
Safe

Table 1: Taxonomy of threats

3.1 Threat model
To classify the problems, we distinguish between internal
and external threats as well as between hot and cold wallets.
While the term wallet is generally used loosely to refer to
a software abstraction (described in Section 2), we will use
the term in the rest of the paper in a more limited, precise
sense.

Definition 1 (wallet). A collection of addresses with
the same security policy.

“Security policy”encompasses the ownership or access-control
list, how the key material stored, and the conditions under
which bitcoins in the wallet may be spent.

The terms hot wallet and cold wallet derive from the more
general terms hot storage, meaning online storage, and cold
storage, meaning offline storage. A hot wallet is a Bitcoin
wallet for which the private keys are stored on a network-
connected machine (i.e. in hot storage). By contrast, for a
cold wallet the private keys are stored offline.

In the context of regular Bitcoin transactions, these defini-
tions suffice. Yet when with the introduction of threshold
signature and multi-signature transactions, we need to be
more precise. These definitions assume a single key that is
stored in one location, an assumption that we will break.
Using our definition for wallet, we can differentiate between
different types of wallets based on the differences in their
security policies. We propose the following definitions:

Definition 2 (Hot wallet). A wallet from which bit-
coins can be spent without accessing cold storage.

Definition 3 (Cold wallet). A wallet from which bit-
coins cannot be spent without accessing cold storage.

Note that these new definitions refer to the desired effect, not
the method of achieving it. The desired effect of a business
that maintains a hot wallet is the ability to spend Bitcoin
online without having to accessing cold storage.

Table 1 shows four types of possible threats. Securing a cold
wallet is a physical security problem. While a network ad-
versary is unable to get to a cold wallet, traditional physical
security measures can be used to protect it from insiders —

for example, private keys printed on paper and stored in a
locked safe with video surveillance.

In addition, our methods may be used to supplement phys-
ical security measures. Instead of storing the key in a single
location, the business can store shares of the key in different
locations. The adversary will thus have to compromise se-
curity in multiple locations in order to recover the key. This
is all we will say about securing cold wallets.

Protecting hot wallets from external attackers is a network
security problem; if the network were completely secure,
then this would not be an issue. We can use threshold signa-
tures to reduce our reliance on network security. Our secure
delegation protocol (Section 3.5) aims to reduce the reliance
on network security in the context of delegation.

Protecting hot wallets from internal attackers is the most
pressing problem. Our central claim, as stated earlier, is
that the level of insecurity of this threat category has no
parallels in traditional finance or network security, necessi-
tating Bitcoin-specific solutions. Our protocols for parallel
control (Section 3.2) and secure bookkeeping (Section 3.4)
both address this problem. While parallel control is preven-
tive, secure bookkeeping is detective .

3.2 Parallel control
Perhaps the most natural application of threshold signatures
to Bitcoin is to build a system of parallel control. Consider a
business that wishes to implement the following simple pol-
icy: transactions must be approved by t or more employees.
For the purpose of this policy, all employees are considered
equal; any t employees can approve a transaction, whereas
any group of less than t employees cannot. To implement
this policy, the business first shares its private key among
its n employees using a (t, n) secret sharing scheme. Each
employee is given a single share.

In a naive design, creating a transaction would involve first
reconstructing the key and then signing in the regular man-
ner. This approach does not work as the transaction is not
“bound” to the execution of the protocol. In other words,
once a subset of employees reconstruct the key, there is no
mechanism that specifies how they must use that key. The
participants (or at least one of them) will gain knowledge of
the private key, and then have free reign to construct what-
ever transactions they would like without the approval of
any other employees.

Instead of using secret sharing alone, we use the ECDSA
threshold signature scheme presented above to achieve par-
allel control. In this scheme, the agreed-upon transaction
is bound to the protocol: the output of the protocol is the
signed transaction. Moreover, since the key is never recon-
structed during the protocol, participants will not be able to
sign subsequent transactions independently, and thus paral-
lel control of the address is maintained. We note that the
constructed signature looks exactly like a regular signature,
and the resulting transaction is thus indistinguishable from
a typical transaction.

Complex Policies. We have thus far only considered a simple
policy in which t employees are required to approve a trans-



action. In practice, however, different employees may be as-
signed different ranks, and the threshold may depend on the
ranks of the employees involved. There has been significant
work showing how to extend Shamir’s secret sharing scheme
to arbitrary access policies [10, 12, 18]. Many of these meth-
ods are out-of-the-box compatible with the threshold signa-
ture scheme we presented.

While in theory, we can realize arbitrary access structures,
we expect that all practical policies can be realized using
threshold access structures. This is for two reasons. First,
we expect that control of wallets will be shared not among
all employees of a business, but rather within small teams.
Second, threshold secret sharing can realize access control
policies with employees of different ranks by assigning more
than one share per employee.

To illustrate, consider an address that is shared among a
manager and her five subordinates; transactions require ap-
proval of the manager and at least one other employee. In
particular, non-managers cannot spend bitcoins without a
manager, and a manager cannot spend bitcoins alone. To
model this, we create a 6-of-10 threshold scheme. The man-
ager is given 5 shares while each of her subordinates are
given a single share. Only the manager together with one
or more of the other employees can meet the threshold of 6
shares and spend the bitcoins.

Comparison with multi-signature approach
Bitcoin transactions are not limited to require a single sig-
nature to be redeemed, but in fact specify a script written
in a stack-based, non-Turing complete programming lan-
guage which defines the conditions under which a transac-
tion may be redeemed. This scripting language includes
support (OP_CHECKMULTISIG) for multi-signature scripts [8]
which require at least t of n specified public keys to provide
a signature on the redeeming transaction. By default, multi-
signature transactions are currently only relayed with n ≤ 3
keys, but may specify up to an absolute limit of n = 20.

A relatively recent feature of Bitcoin, pay-to-script-hash, en-
ables payment to an address that is the hash of a script. This
enables senders to specify a script hash, with the exact script
provided by the recipient when funds are redeemd. This en-
ables multi-signature transactions without the sender know-
ing the access control policy at the time of sending. A quirk
of pay-to-script hash is that the n ≤ 3 restriction is removed
from t-out-of-n mult-signature transactions. However, due
to a hardcoded limit on the overall size of a hashed script,
the recipients are still limited to n ≤ 15.

Advantages of multi-signatures. Multi-signature transactions
have one clear benefit over using threshold signatures in that
they can be signed independently by each participant in a
non-interactive manner, whereas the ECDSA threshold sig-
nature protocol requires multiple rounds of interaction. An-
other potential benefit is that the redeeming transaction pro-
vides a public record of exactly which t of n keys were used
to redeem the transaction, meaning secure bookkeeping is
provided by default (though is also leaked publicly).

Advantages of threshold signatures. We argue that threshold
signatures offer fundamental advantages stemming from the

fact that in the multi-signature approach, the access-control
policy is encoded in the transaction and eventually public
revealed:

Flexibility. If a business using multi-signature transactions
wants to make any modification to its access control policy,
such as adding or removing an employee from those with
transaction approval power, this requires a new script and
thus a new address. This prevents businesses wishing to
transact in Bitcoin from using a long-term static address
and requires moving funds with each policy update. With
threshold signatures, the policy is encoded not in the address
but in the shares. To change the policy, the business would
just need to re-deal key shares according to the new pol-
icy. Businesses can still use a static address for a receivable
account and no Bitcoin transactions are required to change
access control policy.

Confidentiality. When a business presents its script to
spend a transaction, its internal access control policy is ex-
posed to the world. Many companies will want confidential-
ity as to the internal controls that they enforce. Threshold-
signed transactions are completely indistinguishable from
regular transactions. Not only do they not leak the details of
the access-control policy, they do not even reveal that access
control is being used at all.

Anonymity. As we mentioned in Section 2, for purposes of
increasing anonymity, the general practice is to use newly
generated change addresses which cannot easily be linked
to the input addresses. With multi-signature transactions,
unlinkable change addresses are much harder to achieve, as
even if fresh keys are used the destination address (even if
a script hash) must have an identical t-of-n access control
structure to prevent easily linking the change address with
the sending address. With threshold signatures, change ad-
dresses will be unlinkable when sending funds to any reg-
ular (single-key) address or other threshold address, which
should be the vast majority of cases (though not when in-
teracting with multi-signature addresses or other script hash
addresses). In Section 3.3 we show how to generate change
addresses with equivalent threshold access control without
distributing new shares.

Scalability. With multi-sig transactions, the size of trans-
actions grows linearly with the access policy as all of the
valid signing keys are included in the redeeming script (as
well as the sending script, for non-script hash transactions).
In addition to hard limits which Bitcoin enforces (n ≤ 15
for script hash transactions and n ≤ 20 in general), this
means that more complex access control policies are sub-
ject to increased transaction fees and lead to bloat on the
block chain. As threshold signature transactions are indis-
tinguishable from ordinary transactions no matter how com-
plex the underlying access policy is they will not require
increased fees or generate additional data which must be
globally broadcast.

3.3 Extending security policies from addresses
to wallets

Our discussion of parallel control until this point has fo-
cussed on addresses. We now describe how to extend our
threshold-signature based system to wallets. The solutions



we present will not be limited to parallel control, but will
apply generally to threshold-signature-based systems. As
secure bookkeeping (Section 3.4), secure delegation (Section
3.5), and 2-factor security (Section 3.6) are all built on top
of threshold signatures, this lets us extend all of our security
policies to wallets.

The key technical challenge in extending threshold signa-
tures to wallets (i.e., collections of addresses) is that new
addresses need to be generated on demand and we do not
know in advance how many addresses will be needed. It
is not feasible to execute the dealing step of secret sharing
each time we need to generate a new address, since this step
affects all the participants in the group and requires extra
security precautions.

Two approaches can be used to generate fresh addresses in
the threshold context. As we’ll see the latter approach is
clearly superior.

Generating in advance. Some Bitcoin clients generate a
buffer of addresses, typically 100 at a time [1]. We can imple-
ment this in our threshold scheme as well. During the initial
share distribution, we will also share the keys for multiple
newly generated addresses. The extra addresses can be used
as change addresses or given out as fresh addresses. Once
all the addresses are used up, participants will need to one
again be dealt shares of new addresses. By generating a
large number of change addresses each time, we can make
the need to share new addresses very infrequent. This ap-
proach has two drawbacks. Firstly, as the addresses in this
wallet are not linked to each other, each address has to be
backed up separately. As there is no concise backup string
that can recover the entire wallet, this approach is not com-
patible with paper backups. Second, to minimize the hassle
of re-dealing, we will need to be very generous with the num-
ber of addresses that we generate, wasting storage on keys
that we do not yet need.

Deterministic wallets

Deterministic Wallets are sophisticated wallets in which fresh
keys can be derived from previous keys, with the additional
property that the fresh public key can’t be linked to the
previous public key without knowledge of the private key(s),
preserving unlinkability.3 We now present a threshold vari-
ant of deterministic wallets. Our construction introduces the
notion of “extended keys” which are regular Elliptic Curve
keys appended with a private 32-byte salt. If a key pair con-
tains a public key K and a private key k, the extended key
pair is the pair (K||c, k||c), where || represents concatena-
tion. From the initial extended key, or the master extended
key, new child key pairs can be generated in a deterministic
fashion.

Using secret sharing, we can create shared deterministic wal-
lets. We modify the key derivation procedure given in [6] so
that child keys can be derived in a threshold manner. This
modified scheme allows shared child addresses to be derived
in a deterministic manner from a shared master address. In
particular, if an address is shared in an (t, n) fashion, our

3Deterministic wallets typically have another property, hi-
erarchical key derivation, which is not relevant to us.

scheme allows each shareholder to independently compute
their share of the private key for a new child address. The
new address is shared with the same (t, n) structure as the
master address. Each shareholder can also independently
derive the new public key and address.

Threshold deterministic address derivation
We refer to a curve of order n with base point G. We refer
to χP , the compressed form of curve point P . The master
private key is kmas, and corresponding master public key is
Kmas = kmas · G. We refer to c, the 32-byte salt. We will
refer to a master extended key pair (Kmas||c, kmas||c) and
use it to derive a child key pair (Ki, ki) in which i is the
sequence number of the child. Our protocol begins with a
shared address, which we call the master address. In partic-

ular, the jth participant has a share k
(j)
mas of kmas.

1. Let T = HMAC-SHA512(cmas||χ(Kmas)||i)

2. Split T = TL||TR into two 32-byte sequences, TL and
TR

3. k
(j)
i = TL + k

(j)
mas

Each participant now holds a share of the private key ki =
TL + kmas. The public key corresponding to the derived
private key can be reconstructed from just the master ex-
tended public key. As this is known to all participants, they
can each compute it independently as follows:

TL ·G+Kmas = (TL + kmas) ·G = ki ·G = Ki

Participants can use their shares of the child private key to
construct a signature from the new address in a threshold
manner. At no point in the derivation of the child key or the
subsequent signature generations is either key constructed.
It is also worth noting that this derivation protocol is non-
interactive. Participants can derive shares of the new key
completely on their own.

In order to derive the child private key share, each partici-
pant will have to use their share of the master private key.
However, to derive the child public key, it suffices to know
the master public key and TL. To derive TL, one only needs
the salt, c, and the master public key (i.e. the extended
master public key).

It is important that the salt be secret. If we publicize c, any-
body that knows the master public key can derive the public
keys and addresses for the ith child. If we are using the child
addresses as change addresses, this would defeat the entire
purposes of change addresses since they can be derived from,
and hence linked to, the initial address (assuming that i is
chosen in a predictable manner).

We have thus shown how we can generalize our protocols
from addresses to wallets. The scheme presented here en-
ables generating new addresses on demand that have the
same access-control policy as the original address. The pro-
tocol is non-interactive, and eliminates the need for a dealer



to generate and distribute shares of new addresses. This
doesn’t completely eliminate the need for a dealer since a
change in the access-control policy requires re-sharing. See
Section 4.5 and Section 4.6 for techniques to further reduce
the frequency of re-sharing.

3.4 Secure bookkeeping
We will now show how threshold signatures can be used
to build a secure detection mechanism. We will informally
define secure bookkeeping and show how it can be realized
using threshold signatures.

Definition 4 (Secure bookkeeping). A bookkeeper is
an entity that logs transactions along with the identity of
the participant(s) responsible for it. A bookkeeping system
is secure if for every valid transaction, the bookkeeper can
cryptographically prove which participants were involved in
it.

For wallets controlled by a single individual, the block chain
itself provides secure bookkeeping. Every transaction is
logged, and the signed transaction itself serves as a cryp-
tographic proof of the initiating (pseudo-)identity.

Achieving secure bookkeeping for a shared wallet is more dif-
ficult. When multiple users share a wallet, the transaction
itself does not identify which users participated in signing
the transaction. This holds true for all access policies. Cer-
tainly in a 1-out-of-n access policy, in which each employee
is given a copy of the key, the transaction does not look
unique for each employee. But even with a more complex
t-out-of-n access structures in which t 6= 1, it is impossible
to identify the participants from the signed transaction.

To achieve bookkeeping for shared wallets, we require that
every employee be issued an asymmetric key pair (unre-
lated to Bitcoin key pairs). The company maintains a PKI
that maps employees to public keys. All participants in the
threshold signature protocol sign each message using their
private key.

A designated bookkeeper will log all signed messages, and
these logs can later be used to provably identify the partici-
pants of a given transaction. Secure bookkeeping is compat-
ible with any parallel control policy. If a wallet is governed
by a parallel control policy based on t-out-of-n secret shar-
ing, to achieve a bookkeeping-enabled version of the same
policy:

• use n+ t-out-of-2n secret sharing

• distribute n of the shares to the bookkeeper

• distribute the remaining t shares as in the original pol-
icy.

This ensures that no transaction can succeed without the
approval of the bookkeeper. The bookkeeper is designed as
an always-online entity that always approves every transac-
tion request; its sole function is logging.

An alternative to a dedicated bookkeeping entity is to paral-
lelize bookkeeping as well. Here every participant stores logs
of the transactions they participated in. As long as any one
participant produces their logs, they can prove the involve-
ment of every participant involved in a given transaction.

3.5 Secure delegation
Say Alice wants to give Bob control of her Bitcoin wallet
while enforcing some policy. The policy may be temporal,
limiting the period of time for which Bob has control. The
policy may contain a blacklist of addresses Bob cannot send
to, or it may contain a whitelist of the addresses that Bob
is allowed to send bitcoins to. Alice may wish to enforce a
spending limit for a given transaction or an overall spending
limit for Bob. Policies can be arbitrarily complex, but we
will restrict our focus to those policies that are algorithmi-
cally enforceable.

Note that Alice cannot give Bob her private key since once
Bob has the key, Alice can no longer restrict how he uses it.
To avoid this issue, we will consider delegation protocols in
which Alice gives Bob some credential other than the key.
Bob will be able to access a server that Alice set up and use
this credential to create a transaction that is allowed by the
policy.

Alice can run a server that authenticates Bob and signs
transactions on her behalf provided that they are permit-
ted by the policy. While this would work, it relies heavily
on network security. An adversary who compromises the
server will learn the key. This motivates:

Definition 5 (Secure delegation). A delegation sys-
tem is secure if: (1) Bob can produce signed transactions if
and only if they are allowed by the policy, and (2) Alice does
not use a hot wallet.

We can achieve secure delegation with a 2-out-of-2 threshold
signature scheme. Alice creates two shares of her private
key.4 She gives one to Bob and stores the other on her server.
Alice configures her server to only participate in generating a
threshold signature for transactions that are allowed by the
policy. In this system, an attacker who compromises Alice’s
server will gain nothing as the key share on the server is
useless without Bob’s share. Of course if an attacker learns
Alice’s key he can steal her bitcoins, but Alice’s key is stored
offline, making this attack much more difficult.

Recall that because we are using threshold signatures, the
key is never reconstructed. Thus even after Bob success-
fully creates a signed transaction from Alice’s address, he is
still unable to sign further transactions without the partic-
ipation of Alice’s server. Furthermore, Alice can revoke the
delegation by simply destroying her share. Bob’s share is
now useless, and Alice’s wallet remains secure.

3.6 Two-factor security
4For simplicity of exposition we can assume that there is
a single address that Alice is delegating, but as described
in Section 3.3, to delegate a wallet Alice would share her
master private key.



Thus far, we focused on a corporate environment with mul-
tiple actors. But we can extend the principles of dual control
to a situation in which there is only a single person — here
we split control between different machines, not people. The
private key is not stored on any machine nor is it ever re-
constructed during signature generation.

To protect against theft, Alice distributes 2-out-of-2 shares
of her private key among two devices that she owns, say
her computer and smartphone. When Alice initiates a Bit-
coin transaction from her computer, a prompt containing
the transaction details will appear on her smartphone via
her wallet app. If she confirms, the two devices will sign
the transaction using the threshold scheme and broadcast
it. We stress that at no point was the key reconstructed
on either device; on its own, neither device contains enough
information to create a signature. An attacker will have to
compromise both her computer and her smartphone to steal
her bitcoins.

A Bitcoin wallet with two-factor security is arguably more
secure than cash, especially with appropriate backup and
recovery options (Section 4.7). We can further improve se-
curity by generalizing to multi-factor security, but given the
usability drawbacks it is not clear if this will be useful in
practice.

4. SYSTEM DESIGN
We address the most important design decisions that need
to be made to build a system that implements the protocols
we’ve presented. Our primary design goal is to build usable
systems that have a clear security model and are easy to ad-
minister. Our decisions, therefore, favor simplicity over de-
signs that require expert knowledge to administer securely.

4.1 Identity
Although not required by the threshold signature protocol,
all participants in our system are identified and all protocol
messages are signed. This improves accountability, and in
particular enables the secure bookkeeping protocol of Sec-
tion 3.4. It also has the side-benefit of preventing denial-of-
service attacks on the protocol by outsiders.

We intend to use X.509 certificates [19], which is convenient
because many companies already issue certificates to their
employees. We can layer our protocol over TLS with all com-
munication going through a server, and each participant will
authenticate themselves using a certificate. Alternatively,
participants can communicate directly and sign each mes-
sage.

4.2 Synchronous vs. asynchronous design
The ECDSA threshold signature protocol proceeds in rounds
and requires interaction between players. The requirement
for interaction favors a synchronous design in which all users
are online when the signature is being generated. The need
for synchronicity is a limitation, and for this reason non-
interactive protocols are preferred. While non-interactive
threshold signature schemes do exist for other signing al-
gorithms [17], there is no known non-interactive ECDSA
threshold signature algorithm. Synchronicity can be practi-
cally achieved in a number of different ways:

1. Signing can be done from employees’ workstations that
are always left on. In this design, an employee would
broadcast a request to sign. This would send a noti-
fication to all employees in the group. As soon as the
threshold number approve the request, the signature
generation would immediately run as all workstations
are left on.

2. Instead of their workstations, employees can use always-
on devices such as smartphones or dedicated devices.

3. Employees can coordinate a time out-of-band during
which they will be online.

4.3 The curse of homogeneity
Our main goal in creating parallel control systems has been
to eliminate single points of failure. In a corporate environ-
ment, however, all employees often use standard-issue sys-
tems, and system administrators sometimes have the ability
to access all of these machines. A rogue system administra-
tor or an adversary who gains access to a system administra-
tor’s credentials may be able to bypass systems of parallel
control. Further, malware may simultaneously compromise
many or all machines due to software homogeneity.

Thus parallel control is more effective when the software
platform is internally heterogeneous, when system adminis-
trators don’t directly control employee machines, or when
shares are stored on personal/dedicated devices instead of
workstations. Another possibility is to combine two-factor
security (Section 3.6) with parallel control.

4.4 Security of the dealing step
The threshold signature protocol as presented relies on ad-
ministrators to distribute shares. Proper checks must be
put in place on administrators to ensure that they do not
deal extra key shares to themselves. To mitigate this risk,
dealing should only be done very infrequently and with hu-
man oversight rather than in an automated way. The shared
deterministic wallet protocol of 3.3 obviates the need to re-
deal shares unless the access-control list changes, and the
techniques of Section 4.5 minimize the need to re-share even
when the list does change.

Alternately, there exists a protocol to deal shares without
a dedicated dealer (we have omitted it, but it is straight-
forward). Each participant must check the identities of the
other participants to avoid executing the protocol with im-
postors. This is more secure but requires all employees to
participate in the dealing step synchronously.

4.5 Changing the access-control list
In a parallel control system, how do we handle changes to
the access list? In practice we expect this to be an infre-
quent occurrence — companies’ finances are organized into
hierarchical cost centers, and control will be shared between
the (relatively few) employees in a cost center rather than
across the business. Nevertheless, we explore solutions that
further reduce the frequency of creating and distributing
new shares.

The problem of how to add and revoke shares in a secret
sharing scheme is well studied [22, 14, 25, 24], and elegant



solutions exist. The protocols presented in [14, 25] enable
the creation of new shares without changing the shares of
existing employees. The schemes for revocation do require
all employees to update their shares. But even when the
secret is re-shared, these schemes are secure in that they do
not require reconstructing the secret.

There are less complex alternatives. One technique is to
generate some extra shares during the dealing step and store
them on hardware devices. These devices are physically se-
cured so that no employee can access them. If there are
initially n employees and we wish to share with a thresh-
old of t, we create n + m shares with the same threshold
t. When new employees arrive, we give them one of these
extra shares, and we can do this until all m extra shares
have been used up. Variations of this technique are possible
when employees have different ranks.

A single employee leaving may not necessitate re-sharing
the key. As a concrete example, with 3-out-of-5 parallel
control, if one employee leaves, this ex-employee will still
have to collude with 2 of the remaining employees to create
a fraudulent transaction. This is not likely and we may not
have to worry about it. A security policy can specify that the
key be re-shared only after a certain number of employees
leave.

4.6 Parallel control backup and recovery
An employee losing a share has a similar effect as changes to
the access-control list. The most secure option is to re-share
the key every time a loss or theft of any share is detected or
suspected.

Alternatively, we can apply the same principle as before and
generate extra shares. When an employee loses her share,
we simply give her one of the extras. We only need re-share
once a significant number (as specified in the security policy)
of shares has been lost. Of course, employees can pretend to
lose their shares in order to gain access to multiple shares.
Therefore the security policy should also contain limitations
on how many extra shares can be given to a single employee.
For example, if the same employee loses their share more
than once, then we re-share rather than give that employee
a second one of the extras.

4.7 Two-factor security backup and recovery
In the two-factor security system described in Section 3.6,
if one of Alice’s devices is stolen but the other is secure, the
thief will not be able to spend Alice’s bitcoins, but neither
will Alice. We present two options for backup of shares.
First, we can use 2-out-of-3 sharing instead of 2-out-of-2
sharing, with the third share used as an offline backup.
Once Alice detects a loss, theft or intrusion that affects one
share, she can re-secure her wallet by reconstructing the
keys, re-sharing them, and deleting the original shares. The
lost/stolen shares will thus be rendered useless and the wal-
let will be two-factor secure.

The second option is to stick to 2-out-of-2 secret sharing but
separately store backups of the shares of each device. The
recovery process (reconstruction, resharing, and deletion of
original shares) is identical. The first option has the ad-
vantage that if the backup share is stolen it doesn’t confer

knowledge of the private key, whereas the second option al-
lows recovering from a loss of both devices (as long as the
adversary doesn’t compromise both).

As our wallets are deterministic, with either approach, the
only key that needs to be backed up is the master key. Once
the master key has been reshared, participants can derive
their shares for all other keys in the wallet.

5. IMPLEMENTATION
We created a prototype implementation of the ECDSA thresh-
old signature scheme in Java. We began by implementing
Shamir secret sharing, and we then built the threshold sig-
nature on top of it. Our implementation consisted of par-
ticipants that interacted over the network. Each participant
had a static IP that was registered at the time when the
key shares were distributed. The prototype implementation
did not authenticate participants, but in the production im-
plementation, we intend to layer the protocol over TLS to
provide authentication.

Once we constructed the signature, we integrated it into
the Bitcoinj library. We replaced Bitcoinj’s key generation
code with code that generated key shares and distributed
them among the participants. We replaced Bitcoinj’s sign-
ing code with the threshold construction. Using this setup,
we created a Bitcoin address and had the key distributed
amongst 12 participants with a threshold of 9. We trans-
ferred a small amount of Bitcoin to this address, and then
forwarded the Bitcoin onwards by threshold-signing a trans-
action. We broadcast the transaction to the Bitcoin peer-
to-peer network, and it was included in the block chain.5

6. CONCLUSION
Corporations require internal financial controls to operate
effectively. We demonstrated that current Bitcoin technolo-
gies such as multi-signature scripts are inadequate for re-
alizing such controls in a practical manner. Instead, we
showed why a threshold-signature-based system is the right
approach. We presented the cryptographic underpinnings of
such a system and addressed various design questions. We
are now working on an implementation of both parallel con-
trol for businesses and two-factor security for individuals.
Our techniques have the potential to dramatically improve
Bitcoin security, moving it closer to widespread adoption as
a currency.
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