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Abstract—We present a new technique for architecture
portable software fault isolation (SFI), together with a prototype
implementation in the Coq proof assistant. Unlike traditional
SFI, which relies on analysis of assembly-level programs, we
analyze and rewrite programs in a compiler intermediate lan-
guage, the Cminor language of the CompCert C compiler. But
like traditional SFI, the compiler remains outside of the trusted
computing base. By composing our program transformer with
the verified back-end of CompCert and leveraging CompCert’s
formally proved preservation of the behavior of safe programs,
we can obtain binary modules that satisfy the SFI memory
safety policy for any of CompCert’s supported architectures
(currently: PowerPC, ARM, and x86-32). This allows the same
SFI analysis to be used across multiple architectures, greatly
simplifying the most difficult part of deploying trustworthy SFI
systems.

I. INTRODUCTION

Recently, there has been significant interest in systems
that use Software Fault Isolation (SFI) to couple near native
performance with strong isolation. SFI is a memory safety
technique applicable to arbitrary programs and first proposed
by Wahbe et al. [1]. SFI limits isolated code modules to only
a portion of their address space, making it possible to load
untrusted modules in the same address space as trusted code.
SFI isolates programs by rewriting them to enforce policy
(and verifying that binaries have a specific safe form), rather
than proving safety either of the program statically or of
particular executions.

For example, SFI has been used to provide high per-
formance, securely sandboxed client side web applications
[2]; to provide integrity for kernel modules [3], [4]; and to
extend the Java Security Manager across the Java Native
Interface [5]. SFI is a natural choice, given its demonstrated
low overhead [6], minimal programmer annotation load and
language independence [7], and minimal trusted computing
base (TCB) [8]. The original SFI system was designed to
support safe (i.e. non-crashing) extensional functionality for
a database engine [1].

However, SFI techniques are very tightly bound to the
architecture to which they are applied, and so these appli-
cations suffer from a lack of portability: SFI modules must
be specially compiled and verified for each architecture on
which they are to be deployed [1]. And this means that

the trusted SFI verifier must be completely rewritten for
every targeted architecture [9], adding to the size of the
TCB. Further, while the trusted verifier is generally quite
small, its interaction with the architecture is subtle and
has led to security-critical bugs even in carefully evaluated
systems [10].

We propose a different approach, which simultaneously
improves security and portability: instead of doing SFI
translation and verification at the level of assembly code, we
perform SFI on a compiler intermediate language, Cminor,
rewriting programs to guarantee safety and policy compli-
ance. The invariant we establish by rewriting the code allows
us to pass the rewritten program through the back end of
CompCert [11], [12], a certified-correct compiler, to obtain
a safe, policy-compliant executable binary, leveraging the
safety- and semantics-preserving properties of CompCert.
Because this technique allows us to perform our security
analysis at a level which is architecture-independent, the
resulting analysis is portable to any of the architectures tar-
geted by CompCert, currently PowerPC, ARM, and x86. We
prove that our method is correct, producing only security-
compliant programs, by building a prototype implementation
in Gallina, the specification language of the automated proof
assistant Coq [13], [14], and proving that it implements our
security policy soundly. In turn, we use Coq’s extraction
facility to turn our Gallina functions into OCaml code to
compile and isolate real programs.

Our system provides for a small trusted computing base:
we have no need for a separate trusted SFI verifier, as
in traditional SFI [1], [8]. Instead, we can guarantee that
the output of our transformation is safe with respect to
the Cminor operational semantics and thus that CompCert
will produce assembly language that has the same (safe)
observable behavior. While there has been previous work
on formally verified SFI systems (e.g. [15]–[19]), in each
case the SFI and its formal verification are tightly coupled
to the choice of instruction-set architecture.

Specifically, our analysis takes in any program in our
chosen intermediate language Cminor, and produces a trans-
formed program that is safe in the sense that it is not



stuck1 with respect to the Cminor operational semantics
provided by CompCert. The transformed program satisfies
two properties:

Program safety/SFI The transformed program is guaran-
teed to execute safely with respect to the standard SFI
memory safety policy: no reads or writes are done
outside predefined, pre-allocated regions.

Correctness Every safe execution of the input program
corresponds exactly (i.e. one-to-one) to a single exe-
cution of the transformed program with the same ob-
servable behavior. Programs which are not safe may be
transformed to have arbitrary (but safe) behavior. This
correspondence property follows easily by inspection
for each of our portable SFI transformations but has
not yet been proved in Coq.

This approach differs from classical static analysis: we
establish the dynamic safety of any execution of any trans-
formed program. This is the defining feature of SFI: any
program can be transformed into a safe program even
without determining whether the input program was in fact
safe to begin with. Because CompCert is guaranteed to
compile safe programs correctly, this scheme provides the
same model of assurance as SFI but retains architecture
portability and offers a small trusted computing base.

What is particularly notable about this analysis is that
it is possible to isolate the security properties we need at
the level of an intermediate representation. Previous SFI
systems have been described in terms of their action on
concrete addresses and have relied for correctness on the
ability of the SFI compiler and verifier to perform arithmetic
on concrete representations of addresses as numbers (for
example, by bitwise and and or). However, an optimizing
compiler must treat addresses abstractly in order to perform
program transformations—such as spilling/reloading and
stack frame allocation—that rearrange a program’s memory
layout. Indeed, the abstract nature of the CompCert memory
model (described in Section III) is central to CompCert’s
proof of correctness. Thus, we cannot rely on numerical
properties of addresses in our reasoning. One of our major
contributions, then, is a demonstration of how to address this
gap: we present an abstract SFI enforcement mechanism and
demonstrate how to make that mechanism concrete while
preserving its essential properties. In order for our analysis
to be valid, we must carefully examine how assumptions

1The operational semantics of a programming language define the rules
for transitions between states of a model abstract machine. If, at some
state, the execution of the program would cause the machine to transition
according to these rules to another, well defined state, we say that the
program takes a step. A program which can always take a step (or which
is safely halted) is said to be safe. That is, executing the program from
its initial state never yields a machine state that is incompatible with all
rules in the operational semantics. If a program reaches a state where it
cannot take a step, we say it is stuck. Note that this does not mean that the
program stops executing - it just means our model no longer explains the
execution behavior.

in the abstract CompCert memory model can be realized
faithfully in the memory of a real machine. This is described
in more detail in Section VI.

An alternative proposal to address the portable distribution
of code meant for an SFI system is to distribute bytecode for
an intermediate language such as LLVM (as with Portable
Native Client [20]). The bytecode can be compiled by an
untrusted compiler back-end on the client and then verified
by an SFI verifier for that client’s architecture. This approach
solves operational concerns surrounding application porta-
bility (e.g. that applications which have to be distributed
on a per-architecture basis will become fragmented between
platforms over time). But it does not address the problem of
needing to re-engineer and re-verify the trusted computing
base for every architecture.

Additionally, such an approach requires exposing a com-
piler back-end, software typically developed to run in a
friendly environment, to arbitrary input. Modern optimizing
compiler back-ends are large and complicated artifacts not
typically built under the assumption that input may be
chosen maliciously to cause unintended side-effects. One
recent study of widely used compilers found several severe
bugs including incorrect code generation and crashes [21].
CompCert was the only compiler that did not exhibit bugs
when subjected to arbitrary input; no issues were found in
CompCert’s proved-correct components. Because our anal-
ysis accepts arbitrary abstract syntax in one of CompCert’s
intermediate languages, it is no more vulnerable to bugs
caused by malformed input than CompCert as a whole.

Cminor and LLVM are in fact quite similar intermedi-
ate representations. Both are sufficiently high-level to be
architecture independent. Both are sufficiently low-level that
a variety of source languages can be compiled to either
one. Armed with the system we present here, it would be
possible to build a drop-in replacement for Portable NaCl
[20] just by building a verified translation from LLVM to
Cminor. Indeed, there have been recent efforts to formalize
the semantics of LLVM in Coq [22], making this goal all
the more realistic.

The main contributions of this work are:
• A method for software fault isolation (SFI) that is

portable across multiple architectures.
• A prototype implementation of our method together

with a mechanized specification and a machine-checked
proof that guarantees the prototype’s soundness for
memory operations at the Cminor level. We also de-
scribe how to prove additionally that our prototype
does not change the behavior of already-safe programs.
We have not yet completed a machine-checked proof
of end-to-end security of assembly language programs
produced by composing our prototype with CompCert.

We begin by discussing traditional SFI methods in Sec-
tion II. We discuss our approach as a counterpoint in
Section III. In Section IV, we describe our transformation



in detail. In Section V, we show how to prove the trans-
formation correct and how our specification ties in to the
correctness theorem in CompCert to provide both safety and
isolation. In Section VI, we describe our model of memory
and how we relate our abstract address analysis to a flattened
address space. In Section VII, we describe early benchmarks
of programs compiled with our techniques and expand on
our early experiences with the system. Finally, Section IX
presents related ideas from the literature and Section X
contains our conclusions.

II. TRADITIONAL SFI

Here, we explain the goals and operation of classical SFI
methods, which typically have three essential components:
a rewriter, a verifier, and a runtime system.

In traditional SFI, sandboxed assembly language is rewrit-
ten from the originally generated assembly language [8] or
generated by a specialized compiler [1], [2]. Code is then
passed through a trusted assembler2 to create a sandboxed
binary in machine language. A trusted verifier and runtime
system ingest this binary, disassemble it, and verify that it
satisfies certain structural invariants, which imply a two-
pronged policy over dynamic executions:
Reliable Execution Only machine instructions that have

been disassembled and analyzed will ever be executed.
All of these instructions are found in memory in a
region of addresses bounded by [code lo, code hi).

Memory Safety All writes to memory (and in some im-
plementations also reads from memory) will oc-
cur only to the region bounded by the addresses
[data lo, data hi).

The code and data bounds must be chosen at compile-time
and must be known to the compiler and verifier. Typically,
the SFI region has a base address that, taken as a number,
is evenly divisible by some power of two and also has a
size equal to the same power of two, allowing extremely
efficient computation of in-bounds addresses using bit-level
arithmetic [8].3 We will assume these conditions on the SFI
regions for the rest of this paper.

The goal of the SFI code generator takes arbitrary pro-
grams and make them verifiably policy-compliant. The veri-
fier uses the special structure of sandboxed binaries to trade
soundness for completeness; any program accepted by the
verifier is guaranteed to be policy-compliant, but the verifier

2The assembler need not be trusted, but at least one of the assembler or
the disassembler used by the verifier must be. For simplicity, for the rest of
the paper, we will refer to the problem of converting (in either direction)
between assembly and machine code in a trustworthy way as the problem
of requiring a trusted assembler.

3These details are inessential but are common features of prior implemen-
tations [1], [2], [7]–[9]. For example, the dynamic enforcement of pointer
values could be with respect to any bounds, not just power-of-two aligned
bounds. And rather than explicitly modifying bad pointer values, the inlined
reference monitor code could simply redirect control to a trusted error
handler.

will not accept all policy-compliant programs. Conversely,
programs which “go wrong” by violating the SFI policy will
be rewritten to have different (safe) behavior or else will be
rejected by the verifier.

The SFI rewriter must check static references to memory
to ensure that they are in-bounds and reject or modify
unsafe programs. But many memory accesses occur through
dynamic constructs such as fixed offsets from unknown
pointers. It is not possible to know statically whether all
such accesses will be policy-compliant. For these, including
all memory accesses through a CPU register, the rewriter in-
serts sandboxing instructions: extra CPU instructions which
modify the address held in the register or pointer, fixing the
high order bits of the address to a specific value, the SFI
mask. Note that if the address was in-bounds, the sandboxing
instructions have no effect. If the address was out-of-bounds,
a new, possibly unknown (but definitely in-bounds) address
is substituted. In this way, the rewriter need not determine
whether a particular memory access is safe; all sandboxed
accesses are safe by construction.

A program with arbitrary control flow could try to jump
into the middle of an instruction as decoded by the verifier,
yielding a different stream of instructions than that checked
for safety. Thus, all control transfers must target a special
set of aligned addresses. The difficult case here are dynamic
control transfers, such as indirect jumps, calls via function
pointers and returns to addresses held on the stack, which
are handled like dynamic memory accesses: by the insertion
of sandboxing instructions before an indirect call, jump, or
return.

Finally, it is important that the sandboxing checks strictly
dominate (in the control flow graph) the operations they are
meant to protect. Otherwise, a program could prepare an
invalid value in a particular CPU register and then jump
to an operation in which that unsafe value would be used.
This is an under-appreciated, subtle aspect of the structural
invariants imposed by an SFI rewriter: it is mentioned briefly
in the explanation of verifier invariants in Pittsfield [8] but
is missing from the provided implementation; Native Client
[2] does not describe these invariants, but does implement
them correctly. The fact that this observation was deficient
from the discussion and implementation of SFI systems until
recently underscores the need for formal verification. Later
work (e.g. XFI [23]) exploits dominator analysis of the
control flow graph to avoid redundant checks and reduce
overhead.

SFI is typically implemented as a translation validation:
the rewriter need not be part of the TCB. Instead, trust
is generally placed in a separate verifier that operates on
rewritten code. However, in some systems (including ours)
no verifier is necessary; the SFI code generator generates
policy-compliant code. In any case, as discussed below, SFI
requires a trusted runtime (at minimum, to load the isolated
code correctly).



The structural invariants described above can be checked
by a verifier that is just a finite-state machine. Typically, the
verifier operates at load time and ensures that the loaded
binary meets the above requirements. The verifier can be
implemented very simply in a few hundred lines of code. For
such an SFI system to be secure, only the verifier and the
runtime system (including the loader) need to be trusted. A
small TCB is one of the things that makes SFI attractive as a
mechanism for module isolation. Compared with techniques
such as full-scale reference monitors [24, Chapter 8], inter-
preted languages [25], and process-level hardware-enforced
isolation [26], SFI requires a much smaller TCB. Still, even
in carefully hardened systems, mistakes in the verifier do
occur; modern architectures are complicated and supporting
a large subset of the instructions in any ISA leads to
complexity that is difficult to manage successfully.4

Finally, most SFI implementations include runtime sys-
tems that provide services such as inter-module communi-
cations and RPC, limited access to system calls, or calls
into trusted, unsandboxed libraries. These runtime systems
are also necessarily part of the trusted computing base. We
will not discuss such elements, as they are highly variable.

III. PORTABLE SFI

Traditional SFI requires multiple trusted verifiers, one for
each target architecture. Portable SFI instead defines a single
SFI analysis, at the level of an architecture-independent com-
piler intermediate language, CompCert’s Cminor, and relies
on the compiler’s correctness theorem to prove security of
the generated assembly programs.

At the Cminor level, CompCert treats memory abstractly,
not as a collection of addressable bytes. This is highly
desirable: CompCert aims to be an optimizing compiler, and
many of the phases after ours will apply optimizations that
change the memory layout of the program significantly. An
abstract representation of memory is necessary to facilitate
the reasoning in these later phases.

Thus, memory locations are described by a block number
and an offset. While infinitely many blocks may be created
dynamically, each block has a finite size assigned to it when
it is allocated. Our strategy is to treat the entire SFI data
region as a single block and to map all potentially unsafe
accesses to memory (all accesses through pointers visible
at the Cminor level) into accesses only into this block. As
in traditional SFI, we aim not to check that this property
holds of particular pointers but rather to ensure this property
through the use of special mask operations, as we describe
below.

A. Overview

Figure 1 gives a high-level overview of the two major
phases of the portable SFI (PSFI) process. In phase one

4See [27] for a discussion of one such bug in Native Client.
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Figure 1. Our Portable SFI system, including a diagram of the abstract
memory layout before SFI, after the SFI transformation, after both the SFI
transformation and compilation with the CompCert back end, and finally
after assembly in a one-dimensional, finite machine memory.

(labeled “PSFI transformation” in the figure), the PSFI com-
piler rewrites the input Cminor program to a new Cminor
program in which all loads and stores are to the safe SFI re-
gion (as fixed at load time). The SFI transformations, which
we detail in Section IV-E, include operations like relocating
address-taken function local variables and mallocs to the
SFI region. (Locals which are not address-taken are treated
as temporaries in Cminor, and therefore are independent
from memory.) In the figure, we depict the stack reallocation
operation as the movement of the stack frames on the left-
hand side of the Cminor box to a portion of the SFI region
we call the “shadow stack” on the right-hand side of the
box labeled PSFI Cminor. In a similar way, we relocate
heap blocks generated by calls to malloc in the original
Cminor program to heap blocks in the SFI region. This is
accomplished rewriting the original program to call an SFI-
aware version of malloc.

In phase two (labeled “Compilation with CompCert” in
the figure), PSFI compiles the rewritten Cminor program to
PowerPC, x86, or ARM using stock CompCert. CompCert’s
safety and semantics preservation theorems make it possible
to show that the Cminor programs produced by stage one re-
sult in compiled assembly programs satisfying the following



SFI security invariant:

Definition (SFI Security). The output assembly program
loads and stores only in the allowed SFI region, as fixed at
load time, or in spill locations in stack frames introduced by
CompCert (containing, e.g., spilled temporaries and function
return addresses).

Informally, SFI security follows from the following four
observations:

1) Stage one produces safe Cminor programs.
2) Cminor programs rewritten by stage one do not allocate

memory outside the SFI region: PSFI transforms calls to
malloc in the source program to mallocs within the SFI
region. Address-taken local variables are relocated to the SFI
region as well. Cminor local variables that are not address-
taken are modeled in a separate “temporaries” environment
independent from memory.

3) In the CompCert languages, there are two ways to
allocate memory: Calling observable external functions such
as malloc or pushing activation records onto the stack.
(CompCert does not consider the latter an observable event.)

4) CompCert’s semantics preservation theorem means the
compiler does not introduce observable calls to external
functions such as malloc that were not present in the
source program. Thus by 2) and 3), the target program at
most allocates memory for activation records or at external
calls to the SFI-aware malloc. By 1) and CompCert’s
safety preservation theorem, we get that the target program
could not have read or written to locations outside the SFI
region or stack frames introduced by the compiler, since
otherwise it would have become stuck.

B. Advantages of PSFI over traditional approaches

By piggy-backing on CompCert’s compiler correctness
theorem, we avoid the need to define and trust an SFI
verifier for each target architecture. This is a significant gain;
the RockSalt project [17] demonstrated that removing the
verifier for even a single target architecture like x86 from
the TCB of an SFI tool requires significant effort, requiring
about 15,000 lines of machine checked specification and
proof. One must first define semantics for a realistic subset
of x86 (enough to serve as a target for multiple compilers
and for hand-written assembly), then verify the verifier with
respect to this semantics. PSFI sidesteps the “proliferating
verifiers” problem by defining a proved-correct SFI analysis,
then compiling with a proved-correct compiler.

Because our SFI compiler produces verified assembly
code, no separate verification step is required. In effect,
we have used the certified compiler CompCert to build
a certifying (in the sense of proof carrying code [28]5)
SFI compiler. The resulting program can be assembled and

5The certificate in this case would be the correctness proof of our SFI
transformation, coupled with the correctness proof of CompCert itself.

executed without a heavyweight runtime because its safety
is certified by the compilation process.

Performing the security analysis at a higher level in the
compiler allows for the easy analysis of more interesting
and complicated properties than the standard SFI invariants.
Further, the optimizing phases of the compiler have an
opportunity to act on the sandboxed code rather than the
sandboxing transformation acting on the optimized code.
This has the potential to make the sandboxed code more
efficient (for example, redundant or unnecessary sandboxing
operations can potentially be eliminated) and also makes the
sandboxing transformation simpler (since it does not need to
know about idioms generated by particular optimizations).
Indeed, the fact that we do not need to worry about the
security of most types of indirect control flow (with the
exception of calls through function pointers) significantly
reduces the implementation complexity of our system rela-
tive to competing approaches.

In the next section, we describe the SFI transformation
and the parts of CompCert on which it relies: the intermedi-
ate language Cminor, the CompCert memory model, and the
certified back end of CompCert that ties the system together.

IV. TECHNICAL APPROACH

A. CompCert and Compiler Correctness

CompCert [12] is an industrial-strength compiler support-
ing nearly all of the ISO C 90 standard (a.k.a. ANSI C).
The compiler is built using the Coq proof assistant and has
a machine-checked proof that the code it generates is obser-
vationally equivalent to the compiled source program. This
is the key to our method: because the compiler preserves
semantics, invariants established by analysis and rewriting
at the Cminor level are true at lower levels.

Accordingly, we can enforce the SFI security specification
of Section III-A by rewriting programs as they are compiled.
Of course, for the specification to be preserved, we must
also guarantee that the program we analyze does not get
stuck. So we also rewrite programs so that they are safe
with respect to the Cminor operational semantics. Our SFI
transformation T is implemented as a series of seven new
compilation phases in CompCert that convert an arbitrary
Cminor source program S to a Cminor program T (S), such
that T (S) is safe and policy-compliant (in the sense of
Section III-A). Safety of T (S) ensures that CompCert will
produce an assembly-language program which has the same
observable behavior as T (S), meaning that the compiled
program C is also policy-compliant.

B. The CompCert Memory Model

All of the CompCert intermediate languages, including
Cminor and assembly, share a common memory model [29],
[30]. Memory states in this model are collections of memory
blocks of finite size, each with an integer block number
b ∈ Z. Blocks are assigned a size at allocation time, and are



by construction separate. Byte-level addresses are referenced
via an offset δ, which must be within the block’s bounds.
Pointers are constructed by specifying a block number b
and an offset δ, so an address is written (b, δ). In the
version of CompCert we target in this work (1.11), functions
are modeled as code blocks occurring at negative block
addresses, meaning it is possible to have function pointers
in all CompCert intermediate languages.

It is perhaps surprising that, in such an abstract memory
model, we can express a technique such as software fault
isolation, which is usually thought of in terms of the
very concrete expression of pointers as patterns of bits.
Certainly, it is not possible in CompCert’s memory model
to understand where a pointer will end up in the concrete
byte-addressed memory array of the real machine on which
the program will eventually run. However, because memory
blocks in CompCert are separate by construction, we can
reason about interference properties of pointers. As we will
show, this is sufficient for our purposes.

C. Cminor, CompCert, and Infrastructure

Cminor is a simple imperative language designed as a
compiler intermediate language for CompCert. It is compa-
rable to a stripped-down, typeless variant of C. Like high-
level languages, it is processor-independent (indeed, it is the
lowest level processor-independent intermediate representa-
tion in the CompCert stack). CompCert provides a small-step
operational semantics for Cminor, which we adopt for this
work. We chose Cminor because it is processor-independent
yet also easy to target as an intermediate representation as it
has few high-level constructs. Any lower-level intermediate
stage in CompCert would require architecture-dependent
analysis. Any higher-level intermediate stage would intro-
duce source-language dependence. Cminor is used in other
work as a natural target in the CompCert stack for compiling
various source languages [31].

Temporaries in Cminor do not have rich type information.
While the Cminor operational semantics specifies what
values must be held in temporaries in order for expressions
to be valid or for statements to step in the operational
semantics, the temporaries themselves are not typed and
Cminor is encountered in the compiler after type checking.
Therefore, the first pass of our SFI transformer is a simple
type inferencer for int/float temporaries, as we describe be-
low. We use this type information in the PSFI transformation
phases to rewrite potentially stuck expressions.

As in C, Cminor programs may make calls both to internal
and to external functions. Internal functions are those that
are defined in the current translation unit. External functions
are only prototyped. In CompCert’s trace model, calls to
external functions generate observable events.

TypecheckingT1

Cminor Source Program S

Define Program VariablesT2

Flatten ExpressionsT3

Cminor SFI Program T(S) = 
T7(...(T2(T1(S))))

Heap Allocate Stack VariablesT4

Insert Mask FunctionsT5

Safe Execution (Expressions)T6

Safe Execution (Statements)T7

Figure 2. A diagram of the structure of our SFI transformation. Each box
Ti shows what is rewritten at that stage.

D. The SFI Mask

Recall that our strategy for expressing SFI constraints
at the Cminor level is to rewrite all memory accesses in
the sandboxed program so that they reference a single
distinguished CompCert memory block (the SFI block). The
SFI block is allocated during program initialization, before
control has passed to main. Its size is fixed to the size of
the data region in the SFI policy.

To relocate loads and stores to the SFI block, we add to
CompCert a new external function called SFI mask, or often
just mask. At the CompCert level and for the purposes of
proofs, we axiomatize this function to have the following
properties:

• After a call to the SFI mask, the variable passed as an
argument to the function contains a pointer to a valid
address inside the SFI block.

• If the variable passed to SFI mask contained a pointer
to a valid address inside the SFI block, then it contains
the same pointer after the function returns.

• The SFI mask is idempotent.
• The SFI mask is a pure, total function.

We insert masks to restrict expressions that are used as ad-
dresses in potentially unsafe loads and stores. Once masked,
pointers are guaranteed to point inside the SFI region.

E. The SFI Transformation

The SFI transformation comprises several passes. Each
pass is implemented as a function on Cminor ASTs. Here we
describe each pass briefly as well as the invariants the pass
establishes. Figure 2 shows the order in which the passes are
applied. Figure 1 shows the memory layout of the program
in the Cminor source, in the transformed Cminor after all
SFI passes, in CompCert’s abstract assembly language, and
finally in a flat machine memory model.

Because CompCert is an ANSI C compiler, the semantics,
even at the Cminor intermediate representation, reflect the
semantics of ANSI C. The details and restrictions described



below are not merely idiosyncratic: they make C programs
whose executions are not “unpredictable.”

1) Type Inference: In the first pass, we use a typechecker
to infer the int-floatness of the local variables occurring in
the program. Type inference will either fail with a type error,
or will succeed with a symbol table mapping each identifier
in the program to either Tint or Tfloat. The symbol table
is then used in later passes to convey typing information.

By this point in the compiler, the input program has
already been typechecked in C, but that information is not
accessible to our transformations, so we have implemented
our own typechecker for Cminor. This is necessary anyway,
as our system supports any source program which can be
targeted to Cminor, not just those written in C.

2) Define Program Variables: In the second phase, we
use the type information to explicitly define (initialize)
every local variable that occurs in the program. Although
safe Cminor programs would never reference an undefined
variable, this phase ensures that even unsafe programs,
which are acceptable inputs to our SFI transformation, do
not exhibit this particular unsafe behavior.

Safe programs, moreover, must define each program vari-
able before use. Thus it is conservative to predefine each
program variable with an arbitrary value of the appropriate
type, as long as the new definitions occur before any existing
definitions. The variable definition pass ensures that this
is the case by inserting the new definitions as a block in
the preamble of each function. For example, the following
unsafe Cminor function (expressed in C syntax).

void f(void) {
2 int c; double d;

c = (int)(-1.*d);
4 }

would be transformed to

void f(void) {
2 int c; double d;

d = -0.;
4 c = (int)(-1.*d);
}

in order to properly initialize d before first use.
3) Flatten: Because loads in Cminor may occur at nested

positions within expressions, it is not possible to apply the
mask operation directly to every loaded or stored address.
Instead, we perform an intermediate “flattening” transforma-
tion that pulls loads to top-level, while ensuring that loads
only occur to the right of assignment statements. To do so,
we must introduce fresh local variables of the appropriate
types to store intermediate values. However, because our SFI
passes operate above register allocation and optimization in
the compiler stack, these temporaries will often be optimized
away by later compiler phases.

As an example of flattening, consider the following code
block containing nested loads in the call to printf.

int i = 10;
2 int * p;

4 p = &i;
printf(’%d\n’, *p + *p);

After flattening, we get

1 int i = 10;
int * p;

3
p = &i;

5 a = *p;
b = *p;

7 printf(’%d\n’, a + b);

where a is a fresh temporary, and the expression *p +

*p in the call to printf has been replaced by the new
assignments a = *p; b = *p and the expression a +
b.

4) Malloc Shadow Stack: In Cminor, there are three
kinds of local variables. First, there are stack-allocated
local variables which have their addresses taken. At the
Cminor stage in CompCert, these have been turned into
explicit loads and stores into the programmer-visible stack
frame. Second, there are temporaries that do not have their
addresses taken. Temporaries at the Cminor level may be
allocated to registers or spilled later in compilation. Finally,
there are user-invisible local variables such as the return
address of each call frame.

Later in the compilation process, CompCert will spill
temporaries and store return addresses into a user-invisible
portion of the stack frame. A complete stack frame consists
of a user-visible portion, made up of variables accessed by
dereferencing user-visible pointers, surrounded by a user-
invisible portion made up of spilled temporaries and user-
invisible local variables. To enforce the integrity of the user-
invisible stack, in this pass we move the user-visible portion
into a shadow stack in the main SFI block.

To accomplish this, we malloc sufficient memory for
all of the stack-allocated locals in each Cminor function and
rewrite stack accesses to reference this new memory in the
SFI block.6 We must link at runtime with a memory allocator
which is aware of the location and size of the SFI block and
which only allocates safe memory.

Additionally, if a function has no stack-allocated local
variables, we explicitly check for any stack accesses in the
function and remove them. This is necessary because Cminor
contains a special constant type for stack references, which is

6To preserve locality, this malloc may be a special shadow stack
malloc which allocates safe memory on a shadow stack within the SFI
region.



interpreted as an offset to the current stack block. This allows
us to guarantee that, after this pass is complete, the program
contains only heap accesses to memory, local temporaries,
and global variables.

Concretely, consider the following Cminor program.

void main(void) {
2 int i = 10;

int * p = &i;
4

*p = 11;
6 *&i = 12;

return;
8 }

Here i is allocated on the stack because it is addressed in
the assignment int * p = &i. After the shadow stack
transformation, we get the program

void main(void) {
2 void * sb = malloc(4);

*(sb + 0) = 10;
4 int * p = sb + 0;

6 *p = 11;

*(sb + 0) = 12;
8 free(sb);

return;
10 }

in which a new stack frame has been allocated within the
SFI region by a call to an SFI-aware malloc function. Each
access of i in the original program has been replaced by a
dereference of the address sb + 0, the top of the allocated
stack frame. Here sb is a fresh temporary pointer variable.
Before the transformed function returns, a call to an SFI-
aware free is inserted to deallocate the stack frame.

The vast majority of functions in typical C programs do
not contain any addressed local variables. In these cases,
we can avoid the calls to malloc and free entirely along
with the concomitant performance penalty.

5) Mask: We add the SFI mask to protect every operation
that dereferences a pointer. Since the previous Flatten pass
simplified expressions, it is easy to insert the mask function
where required. We model the mask function as a compiler
builtin function with a signature Tint -> Tint. As in the
Flatten pass, we must add fresh temporaries in order to place
the return value in the correct location. These temporaries
are removed by optimization.

We must also ensure correct control flow at this stage. In
Cminor, function pointers are the only real source of indirect
control flow. Other control flow structures (such as condi-
tional branches, switch statements, block-and-exit construc-
tions, and jumps to labels) have well-defined semantics in
Cminor. CompCert will generate correct, faithful assembly-
level implementations which exhibit the same observable

behavior as long as we guarantee that the constructions are
semantically safe at the Cminor level. Thus, control flow
(with the exception of indirect control flow through function
pointers) is confined to the control flow graph visible at
the Cminor level. For calls through function pointers to
be semantically safe, they must point to a known function
(functions pointers are represented as pointers to blocks with
block numbers b < 0) and the known function must have a
signature that matches the stated signature in the call node.

We thus introduce a new mask function to isolate function
pointers. We require a portion of the text region to be set
aside for special SFI-aligned memory blocks, one per dis-
tinct function signature. These new blocks may not overlap
each other or the data region but may otherwise be located
anywhere in memory. Inside these blocks, we place trampo-
lines: small, fixed instruction sequences that implement calls
to the appropriate function. Function pointers are allowed to
point at this sequence, even if they are not allowed to point
at the actual function they reference (which might be loaded
at a different address). The new allowable regions are quite
small: each allowable region needs only to be large enough
to hold the trampolines for those functions with the given
arity and signature that are called by function variables.

We must specify an implementation in assembly for the
data mask function and for function pointer trampolines
for each architecture we wish to target. The particular
choice of sandboxing instructions is not important except for
performance, so long as the implementation has the desired
properties in the CompCert assembly semantics for the given
architecture. For example, on x86, the mask instruction
might be a single and instruction that fixes the high-order
bits of pointers by clearing any that are set erroneously.
Together with a loader that unmaps a memory block equal
in size to the SFI data block at the bottom of the address
space, this mask is sufficient to satisfy the SFI properties
[8].

6) Reliable Execution: Finally, we rewrite the program so
that it is guaranteed never to get “stuck” in the Cminor op-
erational semantics. That is, executing the program from its
initial state never yields a machine state that is incompatible
with all rules in the operational semantics.

This is analogous to the code alignment constraints in
traditional SFI where aligned chunks allow the verifier to
guarantee that it observes the same sequence of instructions
as will be executed. Here, we need not worry about rogue
control flow—CompCert guarantees that it will create a
program that satisfies (at least observably) the control flow
constraints we can see at the Cminor level. However, in
order to take advantage of CompCert’s correctness theorem,
we must give it a program that we know does not observably
“go wrong”, that is, a program which never makes a state
transition not covered by the provided operational semantics.

First, we consider expressions, which must always eval-
uate to well-defined values. In order to guarantee expres-



sion evaluation, it is sometimes necessary to insert runtime
checks (when subexpression values must satisfy certain
constraints) and to substitute made-up values for poorly
formed expressions. For example, if a and b have type
Tint, the statement c = a/b; will only evaluate in the
Cminor operational semantics if b 6= 0. So we replace it with
the statement c = (b != 0)? a / b : 0; where we
replace the evaluation of the expression with an invented
value if it would not otherwise evaluate.

The constant value 0 chosen here is arbitrary. Recall
that because we only guarantee to preserve the behavior of
semantically safe (i.e. well defined) programs but require
safe behavior of all output programs, we can sensibly invent
safe (but not semantics-preserving) behavior for programs
that are not themselves semantically safe. Such runtime
checks are also necessary to resolve value-dependent execu-
tion semantics for pointer subtraction, modular arithmetic,
bit-level shift operations, and pointer-integer comparison (in
Cminor, a pointer may be compared sensibly to the integer
0, but not to any other integer).

Next, we turn our attention to statements. We ensure that
all named function calls are safe with respect to the Cminor
operational semantics by ensuring that the calls appropriately
match the template of the named function. Function pointers
must match the template of some declared function (we only
require that a function pointer can be resolved, since we
cannot know which function it actually points to).

F. Runtime

Our system requires a minimal runtime for each architec-
ture that will be targeted. The primary role of the runtime
is to lay out memory correctly. The loader must place
the data section of the SFI executable in an appropriately-
aligned location for the choice of implementation of data
mask function (and may also have to protect pages around
this location appropriately). Also, the loader must ensure
that global (extern) variables are mapped into the SFI
region, especially if those variables have their addresses
taken. Additionally, the loader must install function pointer
trampolines as described above (or load the functions them-
selves at aligned addresses). The loader may also need to
protect certain regions of memory depending on the choice
of implementation of the mask function: for example, the
loader may need to unmap guard pages around the SFI
block to account for pointer-relative addressing modes or
to unmap pages at the bottom of the address space to allow
for efficient masks that only clear (but do not set) erroneous
bits in sandboxed pointers.

Finally, the runtime must include an architecture-
appropriate malloc implementation which will return only
buffers in the SFI region. We can provide such a malloc
library simply by applying the PSFI transformation to a stan-
dard memory allocation library. Thus, the memory allocator
is also verified and need not be part of the trusted base.

V. VERIFICATION AND TRUST

In this section, we describe the specification of the SFI
system and outline the proof that our implementation meets
this specification. There are two properties that define a
security system as SFI: (1) The system must be able to
transform any any input program so that it executes safely;
and (2) the program transformer does not alter the behavior
of safe programs. SFI systems typically achieve (1) by
modifying input programs so that they are safe, without
analyzing whether that behavior would have been safe
without modification.

To define SFI security for Cminor programs, we first
introduce the notion of OK addresses.

Definition (OK Address). An address (b, δ) is OK , where
b is a CompCert memory block and δ is an offset into block
b, when either

• b is the distinguished SFI block sb, as fixed at program
load time, and losb ≤ δ < hisb, where losb and hisb
are the low and high offsets, respectively, of the SFI
region; or

• (b, δ) addresses a compiler-managed memory region
such as the part of a stack frame used for spilling.

We say a program is SFI-secure when it is (1) safe and
(2) loads or stores only to OK addresses.

Now, we can define the desired properties of our system
more formally

Property 1 (Program Safety and Security). Let S be a
source Cminor program and let T (S) be the program
produced by the SFI transformer. Let C be the assembly
program compiled by CompCert from T (S). Then C is SFI-
secure.

Property 2 (Semantics Preservation). Let S be a safe
Cminor source program. Let T (S) be the Cminor program
produced by running the SFI transformer on S. Then S and
T (S) are observationally equivalent.7

Furthermore, by CompCert’s correctness theorem, we
have the following corollary.

Corollary (Semantics Equivalence of Compiled Code). As-
sembly programs C compiled from T (S) have the same
observable behavior as T (S), and thus as S.

To establish that our PSFI transformations, when com-
posed with compilation by CompCert, produce assembly
programs conforming to the SFI security policy, we first
prove that the Cminor programs output by the program
transformer described in Section IV satisfy SFI security. To
do so, we establish formally the transformation invariants
described in Section IV. For example, after the Masking
pass, programs satisfy the following invariant:

7As in CompCert, programs are observationally equivalent when they
produce equivalent event traces.



Lemma (Masking Invariant). Take source Cminor program
S. Assume S satisfies the invariant established by the
flattening pass (loads only at top-level, and only within an
assignment statement). Let T (S) be the program produced
by the masking transformation. Then

loaded ids(T (S))∪stored ids(T (S)) ⊆ masked ids(T (S))

In other words, assuming the flattening invariant holds
initially of S, the set of masked identifiers in T (S) is a
superset of the set of identifiers loaded or stored in T (S)
(every identifier in T (S) containing an address that is either
loaded or stored has also been masked). This invariant,
together with the fact that masks are inserted directly before
the corresponding loads and stores, and a second invariant
which ensures that loads and stores are only to (potentially
fresh) temporaries, never of arbitrary expressions, establishes
that every memory access in T (S) is guarded correctly.

The formal statements of the invariants for other passes
are not very interesting. For example, to formally express the
flattening invariant used above, we first characterize what it
means for an expression e to be load-free:

load free (e : expr) =
match e with
| Evar i ⇒ True
| Econst c ⇒ True
| Eunop op e1 ⇒ load free e1
| Eload ch e1 ⇒ False
| Ebinop op e1 e2 ⇒
load free e1 ∧ load free e2

| Econdition e1 e2 e3 ⇒
load free e1 ∧ load free e2 ∧ load free e3

A statement s satisfies the flattening invariant (all loads in
s are top-level assignments) when every expression in s
(besides top-level loads themselves) is load-free:

stmt fmap (P : expr→ Prop) (s : stmt) =
match s with
| Sassign i (Eload ch e) ⇒ P (e)
| Sassign i e ⇒ P (e)
| Sloop s ⇒ stmt fmap P s
| · · ·

load free stmt = stmt fmap load free

We lift this property to whole programs in a similar way.

A. Trusted Computing Base

Our system enjoys a very small TCB: it is not necessary
to trust that the isolated program is bug free, because we
rewrite it to be safe. It is not necessary to trust the SFI
compiler because we have proved it sound. It is not even
necessary to trust the proofs of our transformation, as they
are checked by machine. One must only trust the statements
of our soundness theorems above.

Some of the theorems above are in fact about complete-
ness, not security: in reality, while the code consumer cares
about security and the trusted base, as it is her trust in
question, the code producer also needs assurance that the
code has not been broken by the SFI system.

At runtime, only the loader need be trusted. Any addi-
tional runtime services which might be implemented (such
as intermodule communication or trusted system call han-
dlers) would, of course, also be trusted.

The mechanized proof infrastructure must be trusted. In
Coq, a small kernel verifier checks proof objects against
types generated from the theorem specifications. It has been
carefully validated and is widely considered trustworthy. Ad-
ditionally, in order to actually run our code on real programs,
it is necessary to extract the Gallina code to executable
OCaml. The extraction facility itself must be trusted, along
with the OCaml runtime. The compiler, CompCert, need
not be completely trusted: because it has a machine-checked
proof of correctness, only the (much smaller) specification
of that proof is in the TCB.

Finally, as in traditional SFI, it is necessary to trust
the assembler to preserve the semantics of the assembly
language program faithfully in the final, executable machine
language representation (or to analyze those semantics prop-
erly during disassembly). Here, again, it would be possible to
make our technique foundational by extending the semantic
preservation proof in CompCert to machine language.

VI. MODELING MEMORY

In our model of the SFI transformation, we define mask
as an external function that takes as argument a (possibly
unsafe) address and returns an address into the SFI region as
result. We model the SFI region as a distinguished CompCert
block. Since the dynamic semantics of both Cminor and
the CompCert assembly languages employ exactly the same
memory model, we can specify uniformly the semantics
of mask across these languages. Here we consider what
happens when we expand our built-in mask function to in-
lined assembly instructions in a finite, flat, byte-addressable
memory model. We justify this transformation step by show-
ing that the block-level abstraction of mask is an adequate
model of our implementation of mask as inlined assembly.

Claim (Adequacy of the Mask Specification). The in-
lined assembly implementation of mask refines, in the one-
dimensional virtual address space allocated to a running
process by the operating system, the specification of mask
defined above on CompCert memories.

This follows from the fact that CompCert blocks represent
contiguous regions of memory. In particular, CompCert
preserves the behavior of programs that perform pointer
arithmetic within a block, but behavior is not preserved for
pointer arithmetic across blocks.



In a real memory, the SFI region will be a power-of-two
sized block with a base address that is evenly divisible by
the same power of two. In this way, all addresses in the
SFI region have the property that their high-order bits are
fixed to a value known as the tag while choice of low-order
bits is in-bounds. The inlined assembly implementation of
mask must ensure that all pointers match the tag for the
target region before they are dereferenced. This is usually
accomplished by a two-instruction sequence: one or to set
the relevant bits of the tag and one and to clear the others.

Memory in CompCert is infinite, in the sense that the in-
ternal alloc operation over memories never fails to generate
a fresh memory block. This operator is used to create new
stack frames, so this is equivalent to saying that it is always
possible to create a new stack frame. And this is also true
in the C language specification. Whatever techniques are
used to prevent stack overflow in a given system must be
applied here to prevent arbitrary growth of the program’s
stack, which cannot overlap with the SFI region.

VII. EVALUATION

We evaluated our prototype on 18 single-threaded bench-
marks included with the CompCert distribution, totaling over
15,700 lines of ANSI C according to the sloccount tool.

A. Evaluation on x86

In most cases, we observe that our compiler has a
performance somewhere between gcc -O0 and gcc -
O1. We hypothesize that our prototype can benefit from
significant optimization; for example, we should likely
modify our system to use a malloc implementation that
assigns memory in a block specified by and set up by a
trusted runtime loader. Even still, across all benchmarks,
we measure only a 24.7% average runtime overhead over
unmodified CompCert. Our overhead ranges from a 0.5%
speedup over unmodified CompCert for one benchmark,
fib (we believe after investigation that this reflects luck
in cache alignment—the only difference between the two
programs in assembly is a single inlined call to our data
mask) to a 100% slowdown on floats (which makes
heavy use of memory comparisons and so requires many
mask operations). Full results are reported in Figure 3, in
which the geometric means of each benchmark are presented
by compiler, normalized so that the results from unmodified
CompCert always have a mean of 1.0. In this figure, the
ratio of any two bars represents the overhead incurred
by running a program compiled in one configuration over
running the same program compiled in another. Unmodified
CompCert and gcc -O1 produce comparable-quality code
for many benchmarks. Our benchmarks were performed on
a dual-core Intel Core 2 Duo 2.33GHz machine with 2GB
of memory running Linux 3.2.0. For comparison, we also
compiled the benchmark suite with an unmodified version

of CompCert 1.11 and with GCC 4.7.2 with flags -O1, -O2,
-O0, and -O3.

B. Evaluation on ARM

Our benchmarks were performed on a Raspberry Pi,
Model B, which uses a Broadcom BCM2835 System on a
Chip (SoC), containing an ARM ARM1176JZFS processor
running at 700 MHz with 512 MB of RAM (we used a
configuration with 1024 MB of virtual memory, backed by
a swap file on an SD card, although none of our benchmarks
uses a substantial amount of memory. The Pi was running
Linux 3.10.25 and was equipped with GCC 4.6.3.

We evaluated our prototype on 14 single-threaded bench-
marks totaling about 10,500 lines of ANSI C. These were
a subset of the microbenchmarks included with CompCert
used to benchmark our prototype on x86.8

In most cases, we observe again that our compiler
performs similarly to gcc -O0, often significantly better
(close to gcc -O1). Our results likely would be greatly im-
proved by using a standard “dedicated register” sandboxing
scheme, as is standard for SFI systems on RISC architectures
[1], [7]. Also, as in the x86 case, we could benefit signifi-
cantly from careful further work on optimization to eliminate
redundant mask operations or to improve cache performance.
Across all benchmarks, we see a very reasonable mean
overhead of 16.4% with a maximum overhead of 68.9%
on the fannkuch microbenchmark. Two microbenchmarks
(fib and integr) required no mask operations at all on ARM
because the calling convention eliminates memory accesses
related to arguments to main and so the masks are removed
as dead code by CompCert. Full results for ARM are
reported in Figure 4.

We regret that we were unable to procure test envi-
ronments to measure the overhead of our techniques the
PowerPC architecture.

VIII. LIMITATIONS

There are a few general limitations to our approach.
First, as in [20], it is necessary either for the user of
the system to compile an intermediate representation of
the desired program or for some kind of trusted compile-
and-sign service to generate verified binaries. Compiling a
program, especially a large program, can add unacceptably
to the start up latency. However, in our experience, the time
required to compile a program with CompCert is comparable
to other compilers and, while noticeable, is not unacceptable

8CompCert 1.11 unfortunately does not pass its own regression test suite
on the Raspberry Pi for reasons we have not determined. We also left out
of both sets three microbenchmarks that made heavy use of I/O (there are
provided benchmarks for compression/decompression algorithms), since we
determined that the execution environments were not usefully comparable.
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so that the mean benchmark results for programs compiled with unmodified CompCert, Version 1.11 are always equal to 1.0. In this figure, the ratio of any
two bars represents the runtime overhead of running programs compiled with one configuration over another. The average overhead across all benchmarks
for our Portable SFI compiler was 24.7% over unmodified CompCert.

fib
integr

qsort fft sha1 aes

fannkuch

knucleotide

mandelbrot
nsieve

nsievebits
vmach

chomp
perlin floats

arcode lzw lzss
0.0x
0.5x
1.0x
1.5x
2.0x
2.5x

PSFI Compcert
Compcert 1.11
gcc -O0
gcc -O1
gcc -O2
gcc -O3

Figure 4. The geometric mean of many runs of each benchmark (grouped by compiler) in our suite n = 100 times on a Raspberry Pi, which contains an
ARM SoC. Results are normalized so that the mean benchmark result for programs compiled with unmodified CompCert, Version 1.11 is always exactly
1.0. In this figure, the ratio of any two bars represents the runtime overhead of running programs compiled with one configuration over another. The
average overhead across all benchmarks for our Portable SFI compiler was 16.4% over unmodified CompCert.

for interactive use.9 Additionally, other deployment solutions
could eliminate this problem: there could be a trusted code
producer who signs correct binaries; the client could cache
or remember a hash of previously compiled binaries to
facilitate efficient re-use; or the system could be modified
to include a client-side verifier as in traditional SFI.

Second, the CompCert correctness properties really only
apply to single-threaded programs; CompCert provides no
semantics for concurrent programs. Relatedly, CompCert
does not have well-defined semantics for linking together

9We found that compiling programs with CompCert was approximately
10% slower than gcc -O3 and twice as slow as gcc -O0 on a
workload of 19 diverse C programs in the CompCert benchmark suite com-
prising about 10.8 kloc. Our benchmarks of CompCert-compiled programs
show that CompCert produces code which is about as efficient as gcc
-O1; compiling these benchmarks takes approximately 70% longer in

CompCert than with gcc -O1.

multiple translation units. While we know that an SFI-
isolated module will not interfere with other modules outside
the SFI block, we are interested in a more complete model
for composing multiple programs.

Our current prototype has several limitations, which we
are actively working to address. None of these is fundamen-
tal. First, we do not yet rewrite all cases in which a program
might get stuck in the Cminor operational semantics and so
do not support certain critical C language features (function
pointers and extern variables). We also have not built a
custom runtime for our isolated binaries and so we use a
modified SFI mask for measurement purposes (the mask
is functionally a no-op with the same computational cost
as the real mask function). These limitations require only
straightforward engineering effort to overcome.

Status of the Mechanized Coq Development: While
we have proved in Coq that our PSFI transformation pro-



duces Cminor programs satisfying SFI security as defined
in Section III, we have not yet mechanically proved that
1) our transformation produces safe Cminor programs; 2)
that our PSFI passes preserve the behavior of programs
that were originally safe; or 3) the end-to-end theorem
that SFI security theorem holds for assembly language
programs produced by CompCert composed with our pro-
gram transformer. We have paper-and-pencil proofs of these
outstanding theorems, however.

IX. RELATED WORK

SFI ( [1]–[3], [6]–[9], [17], [32]) uses code-rewriting to
inline a reference monitor and guarantee safe execution. The
original SFI applied only to RISC-style architectures because
of the requirement that only instructions which had been
disassembled and analyzed by the verifier may be executed
[1]. Much later work on PittSFIeld generalized the original
SFI scheme to CISC architectures [8] and proved formally
that the static invariants checked by their SFI verifier do in
fact imply the desired dynamic policy [15].

The more recent Native Client (NaCl) [2] implements
the PittSFIeld SFI techniques [8] but with the well-known
optimization that sandboxed memory addresses are held in
segment registers, eliminating the need for many dynamic
checks [26], [33]. Native Client is targeted at web browsers
and has been deployed as a prototype both as a browser
extension and as a built-in security technology in major
modern browsers. Later versions of Native Client have
supported additional architectures [6] as well as dynamic
languages via JIT compilation techniques [7].

More recent work joins SFI with other enforcement
methods to provide fine-grained memory protections [34],
enforce policies on native extensions for type-safe code run
in a virtual machine [5], or enforce dynamically the contract
specified at an API interface [4].

There has been much previous work on formally verified
SFI systems (e.g. [15]–[19]), in each case the SFI and
its formal verification are tightly coupled to the choice
of instruction-set architecture. In particular, the RockSalt
project [17] is notable as the first complete, executable, for-
mally proved-correct SFI system. Like our system, RockSalt
uses the Coq proof assistant for its formalism. However,
unlike our system, RockSalt’s formalization only covers a
single instruction set architecture. Similarly, the ARMor
project [18] provides a proved-correct SFI system for the
ARM architecture.

Control-flow integrity (CFI) [16] and the related technique
XFI [23] use a different kind of inline reference monitor to
enforce a higher-level invariant that only designated code
paths accepted by a verifier can be executed. This in turn
allows more complicated policies to be enforced by static
analysis. More recent work uses these techniques to elimi-
nate redundant SFI sandboxing instructions, creating a faster

hybrid enforcement system [35]. Further work (CCFIR)
restructures CFI checks to vastly improve overhead [36].

Also in the vein of systems for isolating untrusted ex-
tensional modules is Xax, a browser plug-in which isolates
untrusted modules in their own system-level address spaces
and limits the availability of certain system calls, creating a
so-called “picoprocess” abstraction [37]. Picoprocesses are,
like SFI and CFI/XFI modules, required to call into a trusted
security manager for access to system resources.

Proof-carrying code [28], [38] and typed assembly lan-
guage [39] are other methods for providing executable
binaries with certified safety properties. In proof-carrying
code, each statement in a program is related to pre- and post-
conditions in a program logic and a binary comes together
with an encoded proof of these conditions. The proof is
checked at load time, allowing a client to be sure that a
particular policy will hold when the binary is executed.
Foundational Proof-Carrying Code [40] eliminates the need
to trust the verifier. SFI is very much like proof-carrying
code, although the invariants are fixed ahead of time rather
than generated and proved based on a particular program and
policy. This allows the proof checking mechanism in SFI to
be very simple. SFI methods, including our approach, differ
from proof-carrying code in that programs are modified in
a separate transformation to ensure compliance. In a sense,
our SFI method is both certified correct and certifying of
the programs given to it as input. Our approach also adds a
completeness property: we can accept any Cminor program
as input and execute it safely, not just those which have been
proved correct.

Typed assembly language provides type-style guarantees
for values acted on by assembly languages. Type annotations
attached to values can be used by a type checker to certify
particular invariants about the action of a program. SFI
does not keep track of type information when examining a
program for safety. Indeed, SFI abuses the type of addresses,
modifying addresses as bit patterns for efficiency.

Finally, there are many variants of a research paradigm
that is perhaps best called “safe C”. See for example CCured
[41], Cyclone [42], [43], and more recently CETS for
temporal safety of pointers [44] and SoftBound for spatial
safety of pointers [45]. These methods are concerned with
providing high-level safety guarantees such as guarantees
that a pointer does not move past the end of its allocation.
SFI takes a coarser view of safety, providing safety not at the
level of individual pointers but at the module level. Pointers
in SFI-sandboxed code may in fact point to “improper”
locations, so long as those locations are still within the data
range for the module that owns the pointer. SFI does not
provide a mechanism to prove the safety or correctness of a
piece of code on its own. Rather, SFI provides inter-module
confinement, guaranteeing that such faults in one module
cannot affect anything outside that module.



X. CONCLUSIONS AND FURTHER WORK

We present an architecture for software fault isolation that
is portable across multiple instruction-set architectures and
does not depend on details of the particular instruction set
desired for the security of binary execution. We do this with
the help of CompCert, building a certifying SFI compiler out
of CompCert’s certified back end, by performing the critical
security analysis and program rewriting steps at the level of
one of CompCert’s intermediate languages, Cminor. Further,
we prove the soundness of a prototype implementation.

This method has several advantages. First and foremost,
it significantly reduces the implementation complexity of
SFI systems stemming from architecture-specific concerns.
Also, we have a smaller trusted computing than deployment
models that require separate verifiers for each targeted
architecture. Finally, because our analysis is done at a high
level, it can easily be extended to provide more elaborate
guarantees than a simple memory safety policy.

We stress that our analysis, while very different from tra-
ditional methods, is much more akin to SFI than it is to static
analysis. What results from our rewriting is a dynamic policy
over program executions—we are able to guarantee dynamic
pointer safety through only local reasoning about pointer
use. Pointer dereferencing is, in fact, only dynamically safe,
since the safety is imparted by a call to the mask function,
not as a property of the value of the pointer itself. Also,
our analysis will guarantee the safe execution of any input
Cminor program, not just those which can be effectively
analyzed.

There are many potential future directions for this work.
First and foremost, it would be a useful and straightforward
engineering exercise to extend our prototype to a usable
tool suitable for real-world deployment. But there are many
future research directions as well. One would be to make
use of higher-level analysis of the control flow graph and the
relationship between modifications to and uses of pointers
in order to eliminate redundant dynamic checks, similar to
[16], [23], [35], [36]. Because our analysis happens before
optimization, however, it should be possible for the compiler
to perform this analysis in the course of its normal duties
as long as the pure and idempotent nature of the SFI mask
can be expressed to the later optimizers. It should also be
possible to add additional certified analyses to our tool chain,
as in [46], in order to effect more robust policies. Also,
the method could be made foundational by extending the
semantic preservation theorem in CompCert all the way to
executable machine code. Finally, it would be possible to
write a verified compiler from LLVM to Cminor, effectively
making our scheme a drop-in replacement for the proposed
[20]. Indeed, there have been recent efforts to formalize the
semantics of LLVM in Coq [22], making this goal all the
more realistic.
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