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Abstract

Important decisions about people are increasingly made by algorithms: Votes are

counted; voter rolls are purged; financial aid decisions are made; taxpayers are chosen

for audits; air travelers are selected for search; credit eligibility decisions are made.

Citizens, and society as a whole, have an interest in making these processes more

transparent. Yet the full basis for these decisions is rarely available to a↵ected people:

the algorithm or some inputs may be secret; or the implementation may be secret;

or the process may not be precisely described. A person who suspects the process

went wrong has little recourse. And an oversight authority who wants to ensure

that decisions are made according to an acceptable policy has little assurance that

pro↵ered decision rules match decisions for actual users.

Traditionally, Computer Science addresses these problems by demanding a spec-

ification of the desired behavior, which can be enforced or verified. But this model

is poorly suited to real-world oversight tasks, where specifications are complicated

or might not be known in advance; laws are often ambiguous precisely because it

would be politically (and practically) infeasible to give a precise description of their

meaning. People do their best to approximate what they believe the law will allow

and disputes about what is acceptable happen after-the-fact via expensive investiga-

tion and adjudication (e.g., in a court or legislature). Actual oversight, in which real

decisions are reviewed for their correctness, fairness, or faithfulness to a rule happens

only rarely, if at all.

Further, Computer Science often sees rules as self-enforcing: the mere fact that

an automated check fails is su�cient to demonstrate that some choice was invalid.

However, like all rules, automated rules are just the intentions of a system designer

and only bear relevance if people will actually follow them, either due to internalized

incentives or the external threat of punishment.
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This dissertation relates the tools of technology to the problem of overseeing de-

cision making processes. These methods use the tools of computer science to cryp-

tographically ensure the technical properties that can be proven, while providing

information necessary for a political, legal, or social oversight process to operate ef-

fectively. First, we present an example of the current state-of-the-art in technical

systems for accountability: a well-defined policy, specified in advance, is operational-

ized with technical tools, and those same tools are used to convince outsiders or

auditors. Our system enables the accountable execution of legal orders by a judge

allowing an investigator compelled access to private records, so that the investigator’s

access to sensitive information is limited to only that information which the judge has

explicitly allowed (and this can be confirmed by a disinterested third party). Moving

beyond these methods, we present a general framework for accountable algorithms,

unifying a suite of cryptographic tools to design processes that enable meaningful

after-the-fact oversight, consistent with the norm in law and policy. Accountable al-

gorithms can attest to the valid operation of a decision policy even when all or part

of that policy is kept secret.

iv



Acknowledgements

I am extremely grateful to my advisor, Ed Felten, for his unflagging support, his

generosity, and his willingness to go out of his way to be available and helpful to me

and all of his students. I’ve learned much from Ed about how to spot interesting

research problems, how to execute substantial research, and how to communicate the

results of that research for maximum impact.

I have been fortunate to work with a wide range of collaborators on a number of

projects, and would like to acknowledge the contributions to my graduate career of

(in alphabetical order) Andrew Appel, Dan Boneh, Mitchell Berger, Joseph Bonneau,

Nicholas Butowski, Joe Calandrino, Jeremy Clark, Will Clarkson, Ian Davey, Anne

Edmundson, Steve Englehardt, Ariel Feldman, Steven Goldfeder, J. Alex Halder-

mann, Sean Hervey-Jumper, Timothy B. Lee, Peter Johnsen, Ben Jones, Seth Josef-

fer, Harry Kalodner, Anna Kornfeld-Simpson, Elliott Krauss, Andrew Miller, Arvind

Narayanan, Valeria Nikolaenko, Laura Roberts, Cole Schlesinger, Gordon Stewart,

David Wu, Harlan Yu, William Zeller, and Joe Zimmerman. While I did not always

get to work with each of you as much as I would have wanted, you certainly all had

a strong impact on my thinking about research. I am especially grateful to my fellow

students, from whom I learned the most during my time at Princeton.

Academically, I have been strongly influenced by Andrew Appel, who taught me

the value of thinking clearly about a problem before diving into a solution while

remaining e�cient, and by Arvind Narayanan, who taught me the value of looking

where others are not and the value of eschewing short-term wins when one believes

in a long-term plan. Arvind has also taught me the value of real-world adoption

as a measure of research output. I would like to thank my entire thesis committee:

Andrew Appel, Nick Feamster, Edward W. Felten, Matthew D. Green, and Arvind

Narayanan for their candid, careful, and supportive feedback throughout this process.

v



I have been very fortunate to have the unflagging support of my wife, Ann Frey

Kroll, who gave me the strength to keep believing in my work even when it was

di�cult or seemed not to be going anywhere. Ann has shown immense patience and

has taught me to have courage in the face of even great di�culty.

I am also thankful for the support of my family—my parents, Ron and Darcie

Kroll; my sister, Amy Kroll; and the many extended family and in-laws who have

inspired me—all of them have enriched my experience in pursuing my research career

in their own way.

This dissertation is dedicated to the memory of my grandparents, Arvel Henning

Mattson, who helped stir my childhood interest in engineering, and Verna Trom

Mattson, who taught me much about the world and how to live in it e↵ectively.

Without them, I would not have had the opportunity to pursue the education I have

received, and I am truly grateful.

I also acknowledge the memory of my friend, Vice Admiral Thomas J. Hughes,

U.S.N., who is responsible for much more of my career than he ever realized.

Additionally, I must take the opportunity to thank Princeton for giving me the

opportunity and resources to give so much of my time to research in the years since

2009. I am especially grateful to Joy Montero from the o�ce of the Dean of the

Graduate School and her successor Lisa Schreyer for their support through my years

in New Jersey.

Finally, the work in this dissertation was supported in part by a National Science

Foundation Graduate Research Fellowship under Grant No. DGE-1148900 and by a

gift by Norm B. Tomlinson Jr., ’48 to the Center for Information Technology Policy

at Princeton University.

vi



To my wife, Ann, whose courage and strength impel me to keep trying.

vii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

2 Background 21

2.1 Related Concepts from Computer Science . . . . . . . . . . . . . . . . 21

2.1.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Type Systems and Software Verification . . . . . . . . . . . . 24

2.1.3 Verified Computation . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Fairness in Computer Science . . . . . . . . . . . . . . . . . . 27

2.1.5 Systems for Cryptographic Assurance . . . . . . . . . . . . . . 40

2.1.6 Auditing Systems . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.7 Measurement of Automated Decision Systems . . . . . . . . . 46

2.1.8 Accountability . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.9 Our Definition of Accountability . . . . . . . . . . . . . . . . . 56

2.2 Related Concepts from Fields Outside Computer Science . . . . . . . 58

2.2.1 Philosophy of Law, Rule of Law, and Software as Law . . . . . 59

2.2.2 Due Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.4 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . 67

viii



2.2.5 Oversight and Enforcement . . . . . . . . . . . . . . . . . . . 69

2.2.6 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.2.7 Accountability . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Required Cryptographic Primitives 79

3.1 Common Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.1 Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1.2 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Primitives Required for Accountable Warrant Execution . . . . . . . 88

3.2.1 Identity-Based Encryption . . . . . . . . . . . . . . . . . . . . 88

3.2.2 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.3 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2.4 Threshold Cryptography . . . . . . . . . . . . . . . . . . . . . 96

3.3 Primitives Required for General-Purpose Accountable Algorithms . . 98

3.3.1 Cryptographic Commitments . . . . . . . . . . . . . . . . . . 98

3.3.2 Verified Computation . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.3 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.4 Fair Randomness . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Accountable Warrant Execution 117

4.1 Problem and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.2 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.3 A simple, insu�cient approach . . . . . . . . . . . . . . . . . . 129

4.2.4 A complete approach . . . . . . . . . . . . . . . . . . . . . . . 131

ix



4.3 Protocol-Specific Primitives . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.1 Auditable Oblivious Transfer . . . . . . . . . . . . . . . . . . 135

4.3.2 Sharing the IBE master secret . . . . . . . . . . . . . . . . . . 136

4.4 Protocol for Accountable Compelled Access . . . . . . . . . . . . . . 138

4.5 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5.1 Deployment Concerns . . . . . . . . . . . . . . . . . . . . . . 142

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6.1 Encryption Benchmarks . . . . . . . . . . . . . . . . . . . . . 146

4.6.2 Investigation Benchmarks . . . . . . . . . . . . . . . . . . . . 147

4.7 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.8 Discussion and Extensions . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.8.2 On selecting Decryption Authorities . . . . . . . . . . . . . . . 154

5 Constructing Accountable Algorithms 156

5.1 Setting and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2 Accountable Algorithms: A General Protocol . . . . . . . . . . . . . . 159

5.2.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3 Realizing Accountable Algorithms with Concrete Primitives . . . . . 171

6 Example Accountable Algorithms 173

6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.1.1 Constraint System Generation . . . . . . . . . . . . . . . . . . 175

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.1 Linear Classification: Scoring and Risk Assessment . . . . . . 178

x



6.3.2 Fair Classification . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3.3 Lottery: Diversity Visa Lottery . . . . . . . . . . . . . . . . . 185

7 Conclusion: Designing Computer Systems for Oversight 187

7.1 A Remark on Cryptographic Solutions to Real-World Problems . . . 189

7.2 Designing Computer Systems for Procedural Regularity . . . . . . . . 193

7.3 Designing Computer Systems for Verification of Desirable Properties . 194

7.4 Fostering Collaboration between Computer Science, Law, and Public

Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4.1 Recommendations for Computer Scientists: Design for After-

the-Fact Oversight . . . . . . . . . . . . . . . . . . . . . . . . 198

7.4.2 On Accountable Algorithms and Fuller’s “Failures of Law” Ar-

gument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.4.3 Recommendations for Law- and Policymakers . . . . . . . . . 203

7.4.4 The Su�ciency of Accountability . . . . . . . . . . . . . . . . 210

Bibliography 213

xi



Chapter 1

Introduction

Computer systems increasingly determine important and consequential decisions once

governed only by people: computers count votes; purge voter rolls; choose taxpayers

for audits; designate individuals or neighborhoods for law enforcement or intelligence

scrutiny; select air travelers for search; grant visas; and decide credit eligibility. The

e�ciency and accuracy of automated decision making and data analysis ensure that

its domain will continue to expand. Yet the full basis for these decisions is rarely

available to a↵ected people: the underlying algorithm or some inputs may be secret;

or the implementation may be secret; or the process may not be precisely described.

A person who suspects the process went wrong has little recourse.

Additionally, the accountability mechanisms and legal standards that govern de-

cision processes have not kept pace with technology. The tools currently available to

policymakers, legislators, and courts were developed for the oversight of human deci-

sion makers. Many observers have argued that our current frameworks are not well

adapted for situations in which a potentially incorrect, unjustified, or unfair outcome

emerges from a computer [294]. Citizens, and society as a whole, have an interest in

making these processes more accountable.
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As an example of a process that would benefit from increased accountability, con-

sider a government tax authority that is deciding which taxpayers to audit. Taxpayers

are worried that audit decisions may be based on bias or political agenda rather than

legitimate criteria; or they may be worried that decisions will be incorrect because

the authority’s software is buggy. The authority does not want to disclose the details

of its decision policy, for fear that tax evaders will be able to avoid audits. An over-

sight body, such as a court or legislature, must be able to evaluate the tax authority’s

policy after the fact, but ideally can do so without unnecessarily learning the private

financial information of taxpayers.

Questions of accountability and fairness in automated decision processes are get-

ting increasing attention in the law and policy literature [26, 97]. A 2014 White

House review on big data and public policy stated that ”Some of the most profound

challenges revealed during this review concern how big data analytics may lead to

disparate inequitable treatment, particularly of disadvantaged groups, or create such

an opaque decision-making environment that individual autonomy is lost in an im-

penetrable set of algorithms” [46, p. 10].

We are optimistic, however: although we agree that the growing popularity of

automated decision-making in government and industry poses a challenge for exist-

ing legal and regulatory frameworks, we believe that adoption of new technologies

also provides powerful new opportunities to address many of these concerns. While

the current governance of automated decision making is underdeveloped, automated

processes can be designed for governance and oversight. Specifically, this dissertation

introduces a suite of technical tools which provide the bridge from formal assurances

achievable technically to human-level political trust. We call computer systems that

employ these methods accountable algorithms.1 A computer system is accountable

1The term “algorithm” is assigned disparate technical meaning in the literatures of computer
science and other fields. Donald Knuth famously defined algorithms as separate from mathematical
formulae in that they must: (i.) “always terminate after a finite number of steps”, (ii.) that “each
step must be precisely defined; the actions to be carried out must be rigorously and unambiguously

2



when its behavior comports with the political, legal, and social norms under which

it operates and an observer such as a concerned citizen or oversight authority can

determine that this is the case.

Consider a company’s decision to o↵er a particular deal to a consumer. This might

be a pricing decision, a credit approval, an o↵er of insurance, or membership in some

group.2 There is a social interest in having such decisions made fairly, especially with

respect to the treatment of historically disadvantaged groups (an interest which, in

many cases, is enshrined in law [26, 94, 315]). Companies may wish to provide evi-

dence to the public that their methods meet some standard for fairness or procedural

regularity, perhaps to rebut inaccurate accusations of unfairness, to head o↵ potential

criticism, or to establish public goodwill. But how can even expert observers come

to trust this evidence and what evidence must be provided? Because the answers

today are often unclear, such evidence is often ad hoc and based on promises made

by the operator of some computer system under the assumption that violations of

these promises, whether deliberate or accidental, will be detected and will result in

specified for each case”, (iii.) that input is “quantities which are given to it initially before the
algorithm begins”, (iv.) that output is “quantities which have a specified relation to the inputs”,
and (v.) that “all of the operations to be performed in the algorithm must be su�ciently basic
that they can in principle be done exactly and in a finite length of time by a man using paper and
pencil” [229]. Similarly and more simply, in their widely used textbook, Cormen, Leiserson, Rivest
and Stein define an algorithm is “any well-defined computational procedure that takes some value,
or set of values, as input and produces some value, or set of values as output” [102].
By contrast, communications scholar Christian Sandvig says that “’algorithm’ refers to the overall

process” by which some human actor uses a computer to do something, including decisions taken by
humans as to what the computer should do, choices made during implementation, and even choices
about how algorithms are represented and marketed to the public [326]. Sandvig argues that even
algorithms as simple as sorting “have their own public relations” and are inherently human in their
decisions. Another communications scholar, Diakopoulos [121], defines algorithms in the narrow
sense (as “as a series of steps undertaken in order to solve a particular problem or accomplish a
defined outcome”) but considers them in the broad sense (saying “algorithms can arguably make
mistakes and operate with biases”, which does not make sense for the narrower technical definition).
This confusion is common to much of the literature on algorithms and accountability outside of the
computer science literature, which we summarize in Chapter 2.
This dissertation adopts the precise definition of the word “algorithm” from computer science and,

following Friedman and Nissenbaum [153], refers to the broader concept of an automated system
deployed in a social or human context as a “computer system”.

2Decisions about membership in a particular group take on particular salience in light of the use
of machine learning techniques for advanced customer segmentation by many businesses [97].
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punishment. Only rarely do systems provide a�rmative evidence as to how they are

operating and why.

Our framework will allow a decision maker to maintain the secrecy of its policy

while allowing each decision subject and an oversight body to verify that the decision

maker is accountable for its policy in the following sense.

Definition 1. Accountability (informal)

the authority committed to its policy in advance;

the result asserted by the authority is the correct output of the authority’s committed

policy when applied to the individual taxpayer’s data;

any randomness used in the decision was generated fairly; and

the authority can reveal its policy to an oversight body for examination later, without

revealing taxpayers’ private financial details, and that body as well as taxpayers can

verify that the revealed policy is the one that was used to make decisions about them.

We revisit how to define accountability in a way suitable for our purposes in

Chapter 2 and provide a more formal model in Chapter 5.

In general, accountability fosters important social values, such as fairness, trans-

parency, and due process, each of which is a deep subject addressed by an enormous

literature. Accountable algorithms as we define them can play a role in furthering

these goals if used wisely. While our techniques in isolation cannot solve any major

social problem, we believe they exemplify necessary tools for doing so. The use of

such methods can improve upon not only the current governance of computer sys-

tems, but also—in certain cases—the governance of decision-making in general. The

implicit (or explicit) biases of human decision-makers can be di�cult to find and root

out, but decisions based on a formalized rule can be reviewed for fairness, coherence

with social values, or compliance with existing or proposed law.
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The example of a tax collection authority determining whom to audit provides an

excellent illustration of this. A well governed process for determining who gets audited

must be trustworthy to those chosen for auditing and also to those not chosen for

auditing, so that everyone believes the revenue collection process is fair and unbiased

or so that they are willing to comply with the rigors of the audit itself.3 Whether the

process is implemented by a computer or a collection of functionaries, accountability

requires the basis for each decision to be available for later review by an oversight

body. If decisions are made in the mind of a human, the actual process by which

a decision is reached is unavailable to the overseer, who must therefore consider the

possibility that the most adverse possible decision process was used (e.g., if the human

decision maker was given protected status information about a taxpayer, e.g. that

taxpayers race or gender, an overseer could not rule out the possibility that one of

these was improperly used to designate the filer for an audit). If, however, decisions

are made in an automated fashion by a computer program, subsequent oversight can

review exactly the process that led to them, so long as the program records su�cient

information about its operation.

Di↵erent scholarly communities have suggested very di↵erent regimes for the gov-

ernance of automated processes. Legal scholars often suggest additional transparency

or a testing regime as a remedy and fear the inability of human overseers to under-

stand how a computer system actually behaves. Computer Scientists, however, ask

for a complete specification of a desired policy a priori and then set about designing

a computer system that maintains or enforces that policy as an invariant, without

much regard for exactly how such a specification comes into being. Below, we de-

scribe both approaches and their problems in more detail as well as the project of this

3This concern is not entirely hypothetical. In 2013, the United States Internal Revenue Ser-
vice was accused of targeting certain tax filings for additional scrutiny as a political punishment,
the latest in a long history of such accusations. See https://en.wikipedia.org/wiki/List_

of_allegations_of_misuse_of_the_Internal_Revenue_Service for an enumeration of major in-
stances, including the 2013 scandal.
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dissertation: to unify the requirements of both communities and build an interface

between their disparate approaches.

Transparency While legal scholars have argued for nearly twenty years that au-

tomated processing requires more transparency [94, 95, 97, 121, 293, 294, 327], trans-

parency is not a full solution to the problem of accountability. Full transparency can

often be undesirable because it defeats legitimate proprietary trade secrets or per-

mits gaming of a system. Transparency is also insu�cient to reveal problems with

automated decision making: simply reviewing the code of a computer system is not

always enough to know how a decision was made or whether it was made fairly. For

example, the output of a program which interacts with its environment in a way that

a↵ects the outputs (e.g. by reading from a database, registering the time of day, or

determining the load on a system) will not be made reproducible simply by publishing

its source code.

Our tax auditing example provides an obvious case for the insu�ciency of trans-

parency; we identify three major failings of a transparency-oriented accountability

regime.

(i.) A good audit selection process should have a random component, so that even

someone with a good model for how audits are meted out cannot cheat with

the certainty of not getting caught. And yet, if a program polls its environment

for random data (for example, by reading from a system device designed to

supply randomness such as /dev/random or /dev/urandom on UNIX-like sys-

tems), it will return di↵erent results each time it is executed. Therefore, simply

publishing the source code of the program does not on its own provide robust

accountability, because it does nothing to ensure that the asserted results of ran-

dom number generation were fair, and not chosen to reflect a pre-determined

result.
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(ii.) Transparency defeats legitimate security goals: the goal of a tax auditing system

is to increase tax compliance by reducing the incentive to cheat. And yet

disclosing the code of a program that selects people for audit inherently allows

tax evaders to arrange their filings so as to minimize their likelihood of receiving

additional scrutiny.

(iii.) Transparency defeats legitimate privacy goals: a truly transparent system re-

quires that the audit status decisions of individual taxpayers be reviewable, at

least to an oversight body. Such a body will of course have to see the filing

data of taxpayers whose audit status it reviews, compromising the confidential-

ity of that information. If decisions must be reviewable publicly, this disclosure

problem becomes even more intractable.

Technical Assurances Meanwhile, computer scientists have developed several

techniques for ensuring that software systems satisfy well defined predicates. Indeed,

this approach could be described as the main project of the enormous subfields of

computer security [11] and software verification [12,22,298]. Techniques for providing

assurance that an automated process behaves as intended include: (i.) programming

language features designed to help programmers write correct programs or detect

incorrect ones [298]; (ii.) industry-standard methods for software testing [272];

(iii.) tools for formally verifying software against a specification [12, 22]; (iv.) data

analysis methods proven not to violate certain formal fairness guarantees [130]; and

(v.) cryptographic protocols designed to enforce particular invariants or to prove that

a particular computation was performed [16, 38, 39, 42, 49, 57, 162, 187, 291, 357, 369].

While these well-researched tools are useful and important in building governable

automated processes, they all assume that a detailed set of requirements is known

in advance which can be specified in precise mathematical language amenable to

expression in software code. Computer scientists almost always ask for a specification

7



that a system is supposed to meet before they can apply one of the above techniques,

or at least they assume that such a specification exists in principle. However, the

political processes that define oversight and accountability for such systems are rarely

equipped to provide such precise requirements. In particular, governance processes

often consider the correctness of an operation only after the fact, using details from

a particular case to determine if that case was decided correctly. Further, e�cient

governance often requires some level of compromise in determining specific outcomes,

in order to build political support for an action. This vagueness in turn opposes

the conversion of laws into software code. It is rare that governance processes are

equipped to produce such a complete, detailed, technical specification in advance.

Returning to our tax audit example, we can observe that merely constructing a

tax filing correctly is a di�cult problem, let alone the problem of evaluating one for

fraud risk. In the United States, preparing tax forms is estimated to require billions of

person-hours and tens of billions of dollars in specialized services each year.4 Despite

these significant resources, even specialized tax preparation software does not always

produce correct filings. Indeed, the process of converting the tax code (or indeed any

body of law) into software is laborious and error prone, requiring a large department

within the Internal Revenue Service.

We therefore consider traditional computer science approaches to assurance to be

complementary to, but di↵erent from our approach: we wish to show that results are

well-justified, so that auditing and verification processes can function. This is distinct

from the important questions of whether the results computed by any particular

system are, in fact, the correct results or whether they are the results intended by

that system’s designers. For a discussion of the relative merits of recording how a

decision was reached vs. proving that the decision was correct, see Yee [218]. We

4Joshua D. McCaherty, “The Cost of Tax Compliance” The Tax Policy Blog, The Tax Foundation.
11 September 2014. http: // taxfoundation. org/ blog/ cost-tax-compliance
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survey existing techniques for building assurance into computer systems and existing

definitions of accountability in the computer science literature in Chapter 2.

Oversight Instead of well defined rules specified in advance, real-world systems

typically use oversight. Some entity, the oversight body or overseer, has the authority

to demand information from a decision maker and then to hold the decision maker

accountable for its actions. The oversight body might be a court, which has the power

to interpret the law to say whether the decision maker’s actions are lawful, even when

the legal status of those actions might have been initially unclear. Alternatively, the

oversight body can be a legislature or a higher administrative authority, which can

direct a decision maker to change its practices because the oversight body believes

those practices are inconsistent with public values or are likely to be found unlawful.

Oversight occurs after the fact (when it occurs at all) and involves complex legal

or value judgments. It is an expensive process. We model the oversight body as

an oracle that can be consulted only rarely. Decision makers have a model of the

oversight body’s likely behavior, but this model is not exact, so a decision maker will

try to minimize the likelihood of having its actions disapproved by the oversight body,

while simultaneously trying to maximize its mission-oriented objectives.

For example, the power to oversee a tax authority’s decisions about whom to audit

might be vested with a court, a legislative committee, or an internal administrative

body within the agency itself. Regardless, that body would have the authority to

review decisions on a case-by-case basis, investigating whether the decision to audit

or not to audit was consistent with the agency’s standards for making that determi-

nation. A functionary charged with making audit decisions is therefore driven to only

make decisions which he or she believes will be determined on review to have been

valid. At the same time, each functionary will apportion the agency’s audit resources

as best they can to satisfy the agency’s goal of maximizing overall tax compliance.
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Decisions about whom to audit made by a computer can be audited by reviewing

the program that makes them, either by proving that it satisfies particular general

properties, such as only selecting taxpayers paying below a certain minimum e↵ective

rate or by reviewing specific decisions by considering the input/output relation of the

program for a particular taxpayer and determining if that execution comports with

the agency’s policy for deciding audits.

An interface between technology and the law The challenge explored in this

dissertation is how to provide technical assurances which are nonetheless useful in

enabling meaningful oversight. That is, we aim to design an interface that enables

policy processes to oversee automated decision making systems. This will allow de-

ployments of such systems to be embedded in a governance context in such a way

that stakeholders will consider those deployments trustworthy.

Specifically, we propose a novel integration of the technological aspects of pro-

gram and execution verification with the legal and political oversight process. Our

methods are designed to use the tools of computer science to ensure cryptographi-

cally the things that can be proven, while providing the necessary a↵ordances for the

oversight process to operate e↵ectively. This connects the technical aspects of verified

computation with realistic oversight processes. We describe verified computation gen-

erally in Chapter 2, Section 2.1.3. Chapter 3 gives an overview of the cryptographic

tools necessary to enable our methods and an overview of associated approaches to

facilitating accountability and oversight. Chapter 5 describes a cryptographic proto-

col that defines our proposed interface between formal, technical assurances and the

requirements of governance.

As an example of the current state-of-the-art techniques for building accountable

systems, which function well when a complete definition of accountability and the

properties to be enforced can be specified prior to deployment, we present a novel
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cryptographic protocol for compelled access to data by law enforcement which main-

tains strong accountability in the sense that the guarantees made by the cryptography

built into the protocol facilitate robust oversight of what data are accessed, when they

are accessed, that they are accessed only by authorized parties, and that parties who

are obligated to facilitate that access actually do. We survey the state of the art for

designing such systems in Chapter 2. The cryptographic tools we require to build

this protocol are developed in Chapter 3; the protocol itself and the accountability

properties it provides are presented in Chapter 4.

An often-proposed alternative to our approach is to rely on a trusted expert who

is allowed to inspect the system. This can be problematic for several reasons. First,

it is often impossible to identify an expert whom all of the a↵ected parties agree

to be competent and trustworthy. Second, it can be di�cult or impossible to tell

whether the program the expert inspected is the same one that was used to make

decisions. Third, the authority might not trust the expert to see the internals of the

system. Rather than relying on an expert to evaluate the internals of the system, our

methods instead use cryptographic proofs to enable traditional oversight processes

and to convince a skeptical observer who does not see the full system but only its

outputs.

Structure of this Dissertation

This dissertation argues that, no less than when designing a human process or

a traditional bureaucracy, those who design computer systems to fulfill important

functions—whether in the public sphere or the private sector—must begin with over-

sight and accountability in mind. We o↵er a novel example applying state-of-the-art

techniques to a well defined accountability problem; survey currently available tech-

nological tools that could aid in designing systems to facilitate oversight and account-
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ability; introduce a novel cryptographic construction using these tools that facilitates

oversight and accountability for a very general class of automated decision systems;

demonstrate several examples of how our construction could be applied to real sce-

narios; and o↵er suggestions for dealing with the apparent mismatch between policy

ambiguity and technical precision.

We summarize the later chapters below.

Chapter 2: Background

Chapter 2 summarizes traditional approaches to oversight and accountability in both

computer science and other literatures such as public policy, law, philosophy, soci-

ology, and communications. Specifically, we give a taxonomy for uses of the term

“accountability” in computer science, while making our own use of the term precise.

Accountability is a widely used term in the computer security literature, but it lacks

an agreed-upon definition. We believe that computer systems can only be said to be

accountable if they facilitate the goals of the social, political, or legal context into

which they are deployed, much as is true for traditional human-mediated systems.

Specifically, we briefly discuss the role and function of law and philosophy sur-

rounding the concept of “rule of law”, which undergirds our entire project—we aim to

provide tools that enable governance so that end users will trust the actions of decision

making systems, much as the rule of law (rather than rule by the whim of an arbi-

trary ruler) serves to impart trust in governance generally. We also discuss theories

about the role of laws and other rules in society [132,133,156,203]. We also summa-

rize recent legal and social science scholarship relating to the governance of computer

systems. Much has been written about how to ensure due process [94, 97, 294], why

transparency is a useful solution [94, 95, 97, 121, 294, 327], how automated decisions

can mask unfair decisions as fair decisions [26, 97, 138, 315], and on the meaning of

accountability for automated systems [153,287].
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We also discuss related technologies that can provide technical assurances for auto-

mated systems such as software testing [31,160,272], type systems [298,299], systems

for software verification [12, 22], protocols for verified computation or cryptographic

assurance of a well defined invariant [16, 38, 39, 42, 49, 57, 162, 187, 291, 357, 369], as

well as the meaning of “fairness” in computer science [110, 130, 202]. We give a spe-

cial emphasis to surveying algorithms for fair classification in machine learning. We

consider the question of how to certify some definition of fairness in an automated

system particularly interesting and important, and return to it in Chapter 6. We

also survey the computer science literature and describe systems designed to enable

process auditing [11, 109, 194]. We close the chapter with a taxonomy of the uses of

the word “accountable” in computer science [146,365], which are many and disparate,

and contextualize our definition in terms of enabling the governance of a system in a

political, social, or legal context.

Chapter 3: Required Cryptographic Primitives

Chapter 3 defines the required cryptographic tools for the rest of the dissertation,

giving both general primitives and specific constructions as appropriate.

In specific, accountable algorithms require cryptographic commitments and non-

interactive zero knowledge proofs suitable for verifying executions of general-purpose

computations. We construct our implementation using zero-knowledge succinct argu-

ments (zk-SNARKs) [39, 41, 162, 291] and realize commitments in the random oracle

model using a hash function on elements of a field based on the hardness of cer-

tain lattice problems, due to Ajtai [9, 169]. This choice is advantageous, because

Ajtai’s lattice-based hash can be represented compactly and computed quickly in

a zk-SNARK scheme. Lacking an e�cient pseudorandom generator for use in the

computation of a zk-SNARK, we elect to generate pseudorandom data outside the

zk-SNARK and only verify its correct computation in the proof; further details are
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given in Chapter 5. We also survey approaches to achieving verifiably fair and un-

biased random values to use as seeds for a pseudorandom generator. Although our

construction leaves aside many interesting questions about how to make randomized

algorithms accountable, we remark that decision makers fielding our protocol will

need to take steps to make it possible to verify that inputs which are supposed to

have been chosen at random really were, such as engaging in a separate protocol to

generate fair randomness [54], using a trusted random beacon [305], or exhibiting a

public ceremony [134].

Our work on accountable compelled data access uses some more specific cryp-

tographic tools, which allow us to leverage the known structure of the problem to

build protocols that are much more e�cient. The most important of these prim-

itives is identity-based encryption (IBE) [59, 60, 63, 64, 100, 332, 361]. We use the

IBE of Boneh and Boyen (BB-IBE) [59, 60] in our protocol, specifically a variant

known as blind IBE [182] which is related to oblivious transfer (OT) [183]. We

also summarize OT [78, 107, 213, 247, 277–280, 304]. We define in Chapter 4 an OT

variant called auditable oblivious transfer to give a useful, compact abstraction defin-

ing the invariants provided by our protocol. Chapter 3 also describes secret shar-

ing [17, 32, 51, 71, 82, 92, 119, 163, 266, 296, 331]. Specifically, we require the linear

secret sharing scheme of Shamir [331] which we use to define a threshold version of

BB-IBE, also constructed in this chapter.

Chapter 4: Accountable Warrant Execution

We have argued that social, political, and legal processes are not equipped to produce

su�ciently detailed rules to accommodate the traditional notion in computer science

of enforcing a well-defined specification that has been determined in advance. Of

course, in at least some cases, it is possible to specify a precise set of requirements

in advance and then to enforce those requirements by technical measures. When
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this is the case, it is possible (using well studied methods) to build a system that

guarantees the desired policy as an invariant, proving that it holds either to some

set of participating parties, to a designated auditor, or to the public at large. Such

computer systems can also be accountable under our definition, but with the caveat

that they are less common and are less flexible with respect to changes in policy or

the need to handle exceptions and special cases.

We observe that such an approach is similar to the well studied concept of static

analysis in that the properties of the system in question can be determined from

an inspection of the design of the system itself, without the need for interactive

testing or runtime observation. However, such an approach may well make use of

dynamic methods to establish a certain invariant—what is established statically is the

correctness of the dynamic checks themselves and the policy they enforce. Chapter 5,

summarized below, describes an alternative approach which can be analogized to

dynamic analysis.

As an example of this approach, we o↵er a protocol for accountable compelled

access to data by law enforcement [232]. Law enforcement and intelligence agencies

increasingly demand access to data held by providers of communications services,5

sometimes demanding access to a wide swath of communications metadata such as the

details of when and between whom all communications have taken place.6 Naturally,

such compelled access can be cause for concern by citizens at large, and it is clear

that while many such accesses are legitimate and necessary, society has a compelling

interest in limiting the scope of access to those records which can be adjudged as

5See for example a summary of industry-developed tools, referred to as transparency
reports, for reporting when and how often service providers are responsive to govern-
mental data requests, available at http://www.forbes.com/sites/kashmirhill/2013/11/14/

silicon-valley-data-handover-infographic/.
6As an example, see the leaked order of the Foreign Intelligence Surveillance Court: “Secondary

Order, In re Application of the FBI for an Order Requiring the Production of Tangible Things
from Verizon Business Network Services, Inc. on Behalf of MCI Communication Services, Inc.
d/b/a Verizon Business Services.”, available online at http://s3.documentcloud.org/documents/
709012/verizon.pdf.

15

http://www.forbes.com/sites/kashmirhill/2013/11/14/silicon-valley-data-handover-infographic/
http://www.forbes.com/sites/kashmirhill/2013/11/14/silicon-valley-data-handover-infographic/
http://s3.documentcloud.org/documents/709012/verizon.pdf
http://s3.documentcloud.org/documents/709012/verizon.pdf


plausibly contributing to the legitimate furtherance of an investigation. The power

to make this decision, in turn, generally vests in a trustworthy authority such as

a court or administrative judge. Specifically, a longstanding requirement for such

systems is that access happens only under a legal order such as a warrant.

Chapter 4 describes our work on this application scenario, which is joint work

with David Wu, Joe Zimmerman, Valeria Nikolaenko, Dan Boneh and Edward W.

Felten.7 This work develops a precise model of the problem under which there is a

clear policy to enforce. We describe a cryptographic protocol to provide access control

for records subject to compelled access, with the property that any records obtained

by the investigator can be provably shown to have previously been authorized by an

order from the court. We refer to this protocol as a system for accountable warrant

execution.8 Chapter 4 also describes our protocol for enforcing a precise and useful

policy under this model; our implementation of this protocol; and extensive bench-

marks demonstrating the feasibility of applying this method to realistic deployment

scenarios (such as the protection of compelled access to all telephone metadata in a

large country).

Chapter 5: Accountable Algorithms

As mentioned, real world systems (including traditional bureaucratic systems) cope

with ambiguity as to which policy they should enforce using oversight mechanisms,

rendering the traditional approaches to assurances about computer systems, surveyed

in Chapter 2, moot. Chapter 5 describes our approach to designing accountable

algorithms which, in addition to their ordinary outputs, produce commitments and

proofs that can convince the subject of a decision that consistent procedures were

7While this work is yet unpublished, a preliminary version has been released as Kroll et al. [232].
The work presented in Chapter 4 represents significant system-level improvements and new experi-
ments over the released version.

8This name is somewhat careless, since warrants are only one of many types of orders under
which compelled access is possible.
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followed. Accountable algorithms also facilitate oversight by a body such as a court,

legislature, or administrator that is charged with ensuring that the system’s operation

is lawful and (in the case of government) consistent with public values. We construct a

new kind of tool: rather than enforcing a pre-specified and precise set of requirements,

we use cryptography to enable an oversight body to make decisions after the fact about

whether outcomes were acceptable or unacceptable. In this way, our protocol serves

as an interface between available technical assurances and the realities of political

and social processes. This protocol is joint work with Edward W. Felten, to whom is

due the idea of using techniques from verified computation to enable oversight.

Critically, our protocol can ensure the properties we desire while maintaining the

secrecy of some information from some parties, limiting disclosure to precisely the

information necessary to achieve accountability but no more. To take our earlier

tax audit example, it is ideal to prevent an overseer from learning anything about

the filing data of individual taxpayers, but (at a minimum) certain specifics must be

disclosed in order to prove any misbehavior on the part of the tax authority.

Our protocol also provides accountability for randomized decision processes, such

as lotteries or other rules that apportion scarce resources by chance. Specifically, we

require that any random coins required by some execution of a program be replaced

with pseudorandom coins generated from a suitably random seed given as distin-

guished input and produced by a process for generating fair randomness. Many such

tools exist—we survey the options in Chapter 2.

As a concrete example, consider again a tax collection authority tasked with decid-

ing which taxpayers to audit for tax compliance. The authority wishes for taxpayers

to trust its enforcement choices but cannot simply publish its selection rules for fear

that this will enable tax evaders to cheat with confidence by maximizing their likeli-

hood of evading auditing and enforcement. Even if the rule is randomized such that

a published rule does not guarantee freedom from scrutiny, taxpayers have no way
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of knowing that they were not in fact selected for improper reasons, with a falsified

random selection covering the agency’s malfeasance. Our protocol allows the agency’s

decision process to be cryptographically bound to the agency’s result, enabling strong

after-the-fact oversight of individual decisions.

Specifically, we achieve accountable algorithms by describing a new cryptographic

protocol parametrized over a cryptographic commitment scheme and a general purpose

zero-knowledge proof system suitable for applications requiring verified computation.

We define these primitives in their general form in Chapter 3 and also describe e�cient

realizations of them for use in our protocol. In Chapter 5, we describe our protocol for

constructing accountable algorithms as well as our implementation of this protocol

and its performance in general. Chapter 6 describes some specific example scenarios

in detail and the required overhead of addressing these scenarios with our protocol.

Continuing the analogy from the previous chapter summary, this approach can

be thought of as a kind of dynamic analysis in that the correctness of a system

with respect to a policy is determined from observation of the system in action. Our

approach di↵ers from traditional dynamic checks, however, in that all actual checking

is deferred to a later oversight period. Prior to oversight, during actual operation, the

system merely certifies that this deferral is valid because it knows the requisite inputs

for the check (namely, the input/output relation of some function, including any

secret inputs and random coins). This is, however, not a certification or a guarantee

that the check made during the oversight period will pass—it is entirely possible that

the oversight body will later disapprove of the system’s actions and take action to

remedy or punish any perceived misbehavior.

Chapter 6: Example Accountable Algorithms

We demonstrate the practicality of our techniques in Chapter 6, giving a basic per-

formance evaluation of the protocol from Chapter 5 and describing several example
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scenarios which would benefit from accountable algorithms. For each scenario, we

provide an example implementation and describe its performance. Finally, we discuss

some preliminary work on designing useful programming abstractions for accountable

algorithms and for zk-SNARK-based systems in general.

Specifically, we review a basic classification scenario, in which a linear model

is used to assign a score (such as a credit or other risk score) to a large number of

people. Such models can range from simple inner products with a secret set of trained

weights, which are straightforward to represent compactly in the arithmetic circuit

form required in our implementation using zk-SNARKs, to complex kernel-method

classifiers that must be approximated in order to achieve reasonable performance in

a zk-SNARK. Such models are also a useful starting point for an investigation of our

methods for classification tasks, which often rely on linear models

We also consider classifiers with formal fairness properties, such as those investi-

gated by Hardt [202] and Dwork et al. [130]. Such classifiers provide the opportunity

to explore an exciting extension to the protocol of Chapter 5 which allows us to prove

that an invariant holds over a computation without showing a complete execution

trace of that computation.

Lastly, we consider accountability for the U.S. State Department’s Diversity Visa

Lottery, a program with totally transparent rules specified in statute, yet with a

troubled history of accountability. Specifically, in the 2012 fiscal year, the State

Department was forced to rescind its initial computation of lottery winners because

the computation of the winners had been performed incorrectly. Further, because

the nature of the computation is opaque to the lottery entrants, many fraudulent

services prosper by selling entrants services to “expedite applications” or “improve

their chances”. Finally, the opacity of the lottery process can mean that winners or

their families can be viewed as receiving a reward for collaborating with U.S. interests,

and so may be subject to reprisals. Accountable algorithms cannot guarantee that
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the lottery is performed correctly, although they can prove that fair randomness was

used in a fair lottery and provide evidence as to what failed if such a process were to

go wrong.

Chapter 7: Conclusion: Designing Computer Systems for Oversight

We conclude in Chapter 7 by describing how to design computer systems so that

they admit robust oversight and accountability—both for the straightforward problem

of ensuring procedural regularity and the less straightforward problem of ensuring

some sort of fairness, anti-discrimination, or legal compliance property—using our

protocols and other techniques from computer science. This chapter is based on a

paper workshopped at the 2015 Privacy Law Scholars Conference, which is joint work

with Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg, David G.

Robinson, and Harlan Yu [233].

Specifically, we give recommendations for policymakers about how to incorpo-

rate these techniques into requirements on those designing and fielding consequential

automated decision making systems. We also give actionable recommendations for

computer scientists researching future accountability technologies. Ultimately, as

computer-mediated decision systems become more common, such requirements will

be necessary to integrate these decisions into traditional political processes and there-

fore to achieve legitimacy for automated decision systems.

This chapter also includes a discussion of the role of technical tools in achiev-

ing social ends, in which we carefully engage an argument of Narayanan [281, 282]

about the non-usefulness of cryptography for achieving socially defined goals such

as privacy. We attempt to explain why our approach sidesteps the pitfalls in de-

ploying cryptographic systems to situations with poorly defined goals identified by

Narayanan.
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Chapter 2

Background

This chapter presents the context for accountable algorithms as well as a survey of

the related literature in computer science as well as in other fields such as law, public

policy, sociology, philosophy, and communications. This chapter covers contextual

concepts—related cryptography and the specific cryptographic primitives we rely on

are described in Chapter 3. Reflecting the substantial di↵erences between how these

issues are framed in computer science and other fields, we separate our discussion

of the extensive related literature at the boundary of computer science and other

fields, summarizing related concepts from computer science in Section 2.1 and related

concepts from other fields in Section 2.2. We describe a taxonomy of uses of the term

“accountability” in computer science in Section 2.1.8, define our own use of the term

in Section 2.1.9, and describe its meaning in other fields in Section 2.2.7.

2.1 Related Concepts from Computer Science

We begin by considering related ideas from computer science. Our review casts a

wide net, covering a broad swath of technologies and techniques that can improve

confidence that a system is behaving in the desired way.
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2.1.1 Software Testing

Software testing is a structured investigation by the developer of a computer sys-

tem to assess the quality of that computer system and its functionality. Testing is

distinct from unstructured review of a system’s operation and from “debugging”, or

responding to problems as they occur. Myers gives a more careful treatment of this

distinction [272] and surveys software testing methodology. Debugging, however, is

still often integral to the development process. Gelperin and Hetzel [160] give a history

of approaches to and goals of verification methods used in the software development

industry. Once considered unnecessary, software testing later became a discipline unto

itself within the software industry separate from development, commonly performed

in a separate department by specialized engineers. More recently, state-of-the-art

software development methodologies have advocated for testing to become an inte-

gral part of development, performed by the original development team as software

is written. Some advocates even suggest that testing should precede development, a

model known as test-driven development, as it helps sharpen in the developer’s mind

what a program should do [31].

Tests may be separated into broad categories using two major distinctions: the

distinction between static and dynamic testing; and the distinction between black-box

and white-box testing.

Static testing operates on software source code itself and consists of activities such

as code reviews, code walkthroughs, and code inspections. It is essentially a form of

proofreading, although it may be undertaken by more than one person or performed

in a structured way. By contrast, dynamic testing involves running the program and

examining its behavior when given certain inputs. It may be performed at many

levels of abstraction, from evaluating the behavior of an entire program (sometimes

called end-to-end tests or integration tests) to examining only the execution of a

single function or statement (so-called unit tests). Often, dynamic testing methods
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are supported by tools such as stub or mock functions, which replace parts of the

program which are incomplete, unpredictable, or impractical to use when testing; or

debuggers, which allow execution of the program in a controlled environment which

may be carefully examined or altered during execution for testing purposes.

Testing methods may be further divided by whether the tester has access to the

source code and design of the software system under investigation. If access is pos-

sible, testing occurs in a white-box environment; if not, only black-box testing is

possible. Most static testing is naturally white-box, as it involves reviewing the code

itself; however, black-box static testing is possible in the form of testing a specifi-

cation or requirements document. Black-box dynamic testing can only observe the

input/output relation of a program, and so inherently cannot know whether the pro-

gram will behave very di↵erently on inputs not already tested. White-box dynamic

testing, however, can use knowledge of the program’s structure to find classes of in-

puts for which exemplars may be tested and results safely extrapolated to the entire

class. Such analysis can also be used to measure test coverage, or an approximation

of how much of a program’s behavior has been reviewed by testing. More advanced

white-box methods such as fault-injection testing and mutation testing modify the

program or its environment either as it is running or between test runs to determine

how it responds to inconsistent or hostile data or to improve the set of available tests.

Because testing all inputs is combinatorially hard, testing for security properties

often involves feeding a program randomly chosen inputs which may not have any

semantic meaning, in an e↵ort to find unexpected misbehavior in a program. In a

white-box setting, such testing may be greatly improved by some simple program

analysis, as investigated by Godefroid, Levin, and Molnar [165].

So-called grey-box testing uses knowledge of a program’s structure and function

to create test cases, but then executes those cases from a black-box perspective.

Accountable algorithms enable a sort of grey-box testing, in which an oversight body
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can learn the structure and design of a process and determine what information ought

to be made public about each decision in order to engender general acceptance of the

overall computer system.

2.1.2 Type Systems and Software Verification

In nearly all programming languages, there is a set of rules that assigns a property

known as a type to various syntactic constructs such as variables, expressions, state-

ments, functions, or modules. The type of a programming construct is based on what

kind of value it computes; the purpose of type systems is to define and annotate inter-

faces between di↵erent parts of a program so as to prove the absence of undesirable

behaviors by checking di↵erent parts of the program for consistency with one another.

This checking may happen at compile time (that is, statically), at run time (dynam-

ically), or Both. The theory of types is large and rich, but at its core aims to ensure

that programs have a well-defined meaning. Advanced type systems can encode com-

plex correctness properties about the function of a program, and programs written in

languages with such type systems may be more amenable to formal verification. An

excellent overview of the theory and use of types may be found in Pierce [298, 299].

An example of a complete system for producing high-assurance software with proofs

of correct operation in all cases is due to Appel [12].

Types form one approach to the classical problem of formal software verification,

the study of whether a program meets its specified requirements. Formal methods

aim to prove in the tightest way possible the correspondence between the execution

of a piece of software and a given specification for that software. Beyond encoding

the specification in the type of the program or its components, formal methods also

encompass various types of program synthesis, or the automated derivation of exe-

cutable software from a specification; model checking, or the exhaustive investigation

of all configurations of a finite-state system; manual and automated theorem proving,
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or building machine-checkable assertions that a program satisfies a certain desirable

property; and semantic analysis, or the formal assignment of meaning to phrases in

a programming language in one of many simple computational models.

While formal methods are not widely used in industrial software development, they

have long shown promise and do see deployment in areas with hard requirements for

few software bugs, such as aviation, vehicle safety, and systems for handling highly

classified information. In particular, model checking has been used to substantial

benefit in the hardware industry to verify that complex chips, which are developed

in ways very similar to large software systems, do not have unintentional bugs. An

excellent overview of model checking may be found in Baier [22].

Formal methods have also been applied to verify the correctness and accountabil-

ity of data use by automated decision systems. Tschantz and Wing give a method-

ology [351], while Tschantz et al. give more detailed experiments with real systems,

including a verification that certain systems satisfy the stringent requirements of dif-

ferential privacy [348–350].

Formal methods of all stripes are complementary to accountable algorithms. Our

techniques make it possible for an oversight body or the general public to determine

what happened in an automated decision, but not that this action was the correct

action (i.e., the one intended by the system’s designer). An accountable algorithm

can still be buggy or perform outside the intentions and expectations of its designers.

However, we remark that the process of introducing the tools necessary for account-

ability and oversight requires a careful review of how a process works, which may in

turn expose bugs and demonstrate areas for investigation by way of testing or formal

verification. We discuss the value of reviewing processes for accountability further in

Chapter 7. We observe, however, that formal methods are very much about relating

the behavior of a specific implementation of a program to its specification. Therefore,
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they are not directly applicable in the setting we consider, where specifications are

subject to review and oversight.

2.1.3 Verified Computation

Verified computing addresses the problem of outsourcing the computation of a func-

tion to an untrusted worker, such as a large server farm or a distributed set of clients.

Two common scenarios motivate the problem of verified computing: first, a weak

client such as a mobile telephone or single laptop may wish to outsource a very large

computation to a cloud computing provider while guaranteeing that the provider

actually performs the computation, since the weak client cannot check this directly;

second, a large data processing project such as U.C. Berkeley’s Search for Extraterres-

trial Intelligence At Home (“SETI@home”, one of the largest distributed computing

projects ever undertaken) may wish to break a large computational problem into small

pieces to be given to untrusted clients for computation without allowing clients to

return plausible results without actually performing the computation. In the second

scenario, the provider of computational work has the added advantages of being able

to compute the work itself and being able to (at the cost of some loss in e�ciency)

send a sample of already performed work out for reprocessing to check the returned

results for consistency.

A classical solution to convincing a weak verifier of the truth of an assertion it

could not compute itself comes from the theory of interactive proofs [175], described

in slightly more detail in Chapter 3, Section 3.1.2. In particular, work on interactive

proofs led to the development of probabilistically checkable proofs [16], in which a

prover can prepare a proof that the verifier need only check in a very small number of

places (the proofs forNP languages require only a constant number of bits). However,

the entire PCP proof object may be very long—perhaps too long for the verifier to

process. Various improvements to PCPs have been proposed, ultimately leading to
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the work on succinct argument systems presented in Chapter 3, Section 3.3.2 and

used in this dissertation for the protocol of Chapter 5. A more complete history of

work in this area, as well as a formalization of the verifiable computation problem,

may be found in Gennaro, Gentry, and Parno [161].

2.1.4 Fairness in Computer Science

The term “fair” in computer science has been used to describe very simple properties,

such as properties related to the sharing of resources, and also much more di�cult

properties, such as properties of classifiers that imply similar treatment for test points

with certain attributes. We briefly survey both kinds of uses here.

Fair Scheduling and Resource Allocation

The simplest notion of “fair” in computer science is that a number of processes com-

peting for a resource (disk, memory, CPU time) receive equal shares (in expectation,

or within some asymptotic bound) of that resource according to the amount they

requested or perhaps according to some higher level policy such as equal shares per

user, which are then subdivided per process. For example, on a system with four

users each running a single process, each process should receive 25% of the CPU

time. If one user starts a second process, that user will receive 25% of the CPU time

overall, but each of her processes will only receive 12.5% individually. A higher level

of abstraction places users into groups and apportions shares of a resource to each

group. Shares may also be weighted, to apportion extra resources to important tasks

or groups.

Fair resource scheduling is an instance of the well-studied fair queuing prob-

lem [184, 337], itself a question about how to assign priorities in a priority queue [8,
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102]. A full survey of this literature is beyond the scope of this chapter. Fair sched-

ulers are widely deployed in modern computer systems.1

Finding algorithms for fair division of resources is a central problem of 20th-

century game theory, although the problems it addresses are very old indeed, dating

at least two thousand years [18]. The exemplary problem in this area is the problem

of splitting a piece of cake between two players in a way that is envy-free (i.e., the

players are both happy with the outcome; neither would prefer the other’s piece of the

cake) [19], a problem and solution described even in the Bible. This problem is closely

tied to the general technique in cryptographic protocols of cut and choose, in which

one player must commit to the partition of some set of secret values and another

verifies the validity of this partition by examining one or more elements for which the

underlying secrets are revealed. These techniques have been expanded in the game

theory literature to cover situations with multiple players, disparate utility among

the players (e.g., if half the cake is of a di↵erent flavor from the other half, how do

the players apportion pieces according to their utility of flavors), and multiple levels

of resources (e.g., dividing rent in a house with as many bedrooms as housemates). A

summary of this vast literature can be found in Brams and Taylor [68,69] or Robertson

and Webb [314].

Unbounded Nondeterminism

A generalization of fair resource allocation is the notion of fairness in systems with

unbounded nondeterminism, defined as systems of concurrent processes where the

amount of delay in servicing a request by one process can become unbounded. Dijkstra

argued that such systems are impossible in practice [124], leading Hoare to argue that

1For example, the popular open-source operating system Linux implemented the first fair-
queuing-based process scheduler in a general-purpose modern operating system, the “Completely
Fair Scheduler” by Ingo Molnár, based on a priority queue implemented as a red-black tree. Prior
to this, fair scheduling had only been applied to network queues in desktop operating systems. See
http://lwn.net/Articles/230501/.
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e�cient systems should strive to maximize fairness [207]. Hoare defined fairness as

the property that if the set of processes enters a particular state infinitely often, it

must take every outgoing state transition from that state. Equivalently, every possible

state transition must occur in an infinite computation.

The halting problem [352] severely constrains the utility of models of computa-

tion with unbounded nondeterminism—the halting problem can be solved using the

fairness constraint in at least some models of computation with unbounded nonde-

terminism [339]. The very powerful model of nondeterministic Turing machines only

exhibit bounded nondeterminism. This is one of the fundamental barriers to robust

formal reasoning about concurrent computations. To resolve this, Hewitt introduced

the Actor model [206], later formalized by Clinger [99], which defines sets of con-

current processes that can each be computed by a Turing machine, even though the

operation of the entire set cannot. The actor model, along with Hoare’s model of

communicating sequential processes (CSP) [207], are important tools for reasoning

formally about networked systems, which can easily exhibit unbounded nondetermin-

ism (e.g., if a network link fails).

Fair Classification

A more complex notion of fairness arises from classification problems in machine

learning. This is relevant to automated decision processes, which often rely on learned

models. Section 2.2.6 discusses practical failings of such systems as reviewed in the

social science and legal literature. Section 2.1.7 discusses e↵orts in computer science

to examine the fairness of complex automated decision making systems in practice

through large-scale measurement and reverse engineering of models. This section
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describes the state of the art in machine learning systems which satisfy well-defined

formal fairness properties.2

One commonly understood way to demonstrate that a decision process is inde-

pendent from sensitive attributes is to preclude the use of those sensitive attributes

from consideration. For example, race, gender, and income may be excluded from a

decision-making process to assert that the process is “race-blind”, “gender-blind”, or

“income-blind.” From a technical perspective, however, this approach is naive. Blind-

ness to a sensitive attribute has long been recognized as an insu�cient approach to

making a process fair. The excluded or “protected” attributes can often be implicitly

encoded in, or highly correlated with, other non-excluded attributes. For example,

when race is excluded as a valid criterion for a credit decision, illegal redlining may

occur when a zip code or street name is used as proxy that closely aligns with race.

It seems clear that this type of input “blindness” is insu�cient to comport with

intuitions of fairness. Although there are many conceptions of what fairness means,

we consider here a definition of fairness in which similarly situated people are given

similar treatment–that is, a fair process will give similar participants a similar prob-

ability of receiving each possible outcome. This is the core principle of a developing

literature on fair classification in machine learning, an area first formalized by Dwork

et al. [130]. This work stems from a longer line of research on mechanisms for data

privacy [128,129]. We describe further the relationship between fairness in the use of

data and privacy below.

The principle that similar people should be treated similarly is often called indi-

vidual fairness and it is distinct from group fairness, in the sense that a process can

be fair for individuals without being fair for groups. For example, if an apartment

complex requires renters to maintain a certain minimum income to hold an apart-

2Some material in this section is drawn from a paper workshopped at the 2015 Privacy Law
Scholars Conference which is joint work with Joanna Huey, Solon Barocas, Edward W. Felten, Joel
R. Reidenberg, David G. Robinson, and Harlan Yu [233].
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ment, then anyone who meets the income threshold can lease an apartment, and so

the process will be fair for individuals. However, if the distribution of incomes is very

disparate across subgroups of the population (e.g., if a particular racial minority has

a significantly lower income distribution), then the process will tend to exclude some

groups. As we shall see below, it is sometimes the case that a su�ciently restrictive

notion of individual fairness also implies certain definitions of fairness for groups.

Although it is almost certainly the more policy-salient concept, group fairness is

more di�cult to define and achieve. The most commonly studied notion of group

fairness is statistical parity, which says that an equal fraction of each group should

receive each possible outcome. While statistical parity seems like a desirable prop-

erty because it eliminates redundant or proxy encodings of sensitive attributes, it is

an imperfect notion of fairness. For example, statistical parity says nothing about

whether a process addresses the “right” subset of a group. Imagine an advertisement

for an expensive resort: we would not expect that showing the advertisement to the

same number of people in each income bracket would lead to the same number of

people clicking on the ad or buying the associated product. A malicious advertiser

wishing to exclude a minority group from the resort could design its advertising pro-

gram to maximize the likelihood of conversion for the desired group while minimizing

the likelihood that the ad will result in a sale to the disfavored group. In the same

vein, if a company aimed to improve the diversity of its sta↵ by o↵ering the same

proportion of interviews to candidates with minority backgrounds as there are mi-

nority candidate applications, that is no guarantee that the number of people hired

will reflect the distribution either of applicants or of the general population. And the

company could hide discriminatory practices by inviting only unqualified members

of the minority group, e↵ectively creating a self-fulfilling prophecy as described in

Barocas and Selbst [26].
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The work of Dwork et al. identifies an additional interesting problem with the typ-

ical “fairness through blindness” approach: by remaining blind to sensitive attributes,

a classification rule can in fact select exactly the opposite subset of a protected status

group from the subset intended! Consider for example a system that classifies profiles

in a social network as representing either real or fake people based on the uniqueness

of their name. In European cultures, from which a majority of the profiles come,

names are built by making choices from a relatively small set of possible first and

last names, so a name which is unique across this population might be suspected to

be fake. However, other cultures (especially Native American cultures) value unique

names, and so it is common for people in these cultures to have names which are

not shared with anyone else. However, because a majority of accounts come from the

majority of the population, for which unique names are rare, any classification based

on the uniqueness of names will inherently give a higher false-positive rate for real

minority profiles than for majority-group profiles, and may also have a correspond-

ingly high false-negative rate. This unfairness could be remedied if the system could

recognize and act on the minority status of a name under consideration, since then

the system could know whether the implication of a unique name is that a profile is

very likely to be fake or very likely to be real.

This insight explains why the approach taken by Dwork et al. is to enforce similar

probabilities of each possible outcome on similar people, requiring that the aggregate

di↵erence in probability of any individual receiving any particular outcome be limited.

Specifically, Dwork et al. require that this di↵erence in chance of outcome be less

than the di↵erence between individuals subject to classification, drawn from a set V .

This amounts to a Lipschitz condition on the classification function under a similarity

metric for individuals, d : V ⇥ V �! R meant to be defined per-task. This requires:

(1) a mathematically precise notion of how similar or di↵erent people are, which

might be a score of some kind or might naturally arise from the data in question
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(for example, if the physical location of subjects is a factor in classification, we might

naturally use the distance between subjects as one measure of their similarity); and

(2) that this notion of similarity capture all relevant features, including possibly

sensitive or protective attributes such as minority status, gender, or medical history.

Given such a task-specific metric, Dwork et al. define a classification M as a function

M : V �! �(A), where A is the set of possible classification outcomes. That is, a

classifier is a function from individuals to distributions over outcomes. Letting D be

a measure of distance between distributions, the Lipschitz condition is:

D(Mx,My)  d(x, y) 8x, y 2 V

Because this approach requires the collection and explicit use of sensitive attributes,

the work describes its definition of fairness as “fairness through awareness”. While

the work of Dwork et al. provides only a theoretical framework for building fair

classifiers, others have used it to build practical systems that perform almost as well

as classifiers that are not modified for fairness [150,155,222,374].

The work of Dwork et al. also provides the theoretical basis for a notion of fair

a�rmative action, the idea that imposing an external constraint on the number of

people from particular subgroups who are given particular classifications (e.g., at a

minimum, x members of a certain minority group should be interviewed for a job)

should have a minimal impact on the general fairness principle that similar people are

treated similarly. Specifically, the work of Dwork et al. describes a linear program

which maximizes overall fairness, enforces the a�rmative action requirement, and

minimizes loss of classification utility under the Lipschitz condition described above.

This provides a technique for forcing a fairness requirement such as statistical parity

even when it will not arise naturally from some classifier.
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A more direct approach to making a machine learning process fair is to modify

or select the input data in such a way that the output decisions satisfy some fairness

property. For example, in order to make sure that a classifier does not over-reflect

the minority status of some group, we could select extra training samples from that

group or duplicate samples we already have. In either case, care must be taken to

avoid biasing the training process in some other way or overfitting the model to the

non-representative data.

Other work focuses on fair representations of data sets. For example, we can take

data points and assign them to clusters, or groups of close-together points, treating

each cluster as a prototypical example of some portion of the original data set. This

is the approach taken by Zemel et al. [374]. Specifically, Zemel et al. show how to

generate such prototypical representations automatically and in a way that guarantees

statistical parity for any subgroup in the original data. In particular, the probability

that any person in the protected group is mapped to any particular prototype is equal

to the probability that any person not from the protected group is mapped to the

same prototype. Specifically, given a set of users X out of a universe U and a random

variable S which defines whether a user is protected, we let X+ ⇢ X, X� ⇢ X be

the subsets of X for which S = 1 and S = 0, respectively. Then our goal is to learn

the multinomial random variable Z, which takes K possible values, to each of which

is associated a prototype vk 2 U . The fairness requirement is that

P (Z = k|x+ 2 X+) = P (Z = k|x� 2 X�) 8k

Therefore, classification procedures which have access only to the prototypes must

necessarily not discriminate, since they cannot tell whether the prototype primarily

represents protected or unprotected individuals. Zemel et al. test their model on

many realistic data sets, including the Heritage Health Prize data set, and determine
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that it performs nearly as well as best-of-breed competing methods while ensuring

substantial levels of fairness. This technique allows for a kind of “fair data disclosure”,

in which disclosing only the prototypes allows any sort of analysis, fair or unfair, to

be run on the data set and generate fair results. However, this approach relies by

construction on the problematic definition of group fairness as statistical parity.

A related approach is to use a technique from machine learning called regulariza-

tion, which involves introducing new information to make trained models more gen-

eralizable (usually in the form of a penalty assigned to undesirable model attributes

or behaviors). This approach has also led to many useful modifications to standard

tools in the machine learning repertoire, yielding e↵ective and e�cient fair classifiers.

Examples of this technique is the work of Kamishima, Akaho, and Sakuma [223], the

works of Hajian et al. [195–198] and the work of Zafar et al. [373].

The approach of Zemel et al. suggests a related approach, which is also used in

practice: the approach of generating fair synthetic data. Given any set of data, we can

generate new, computationally indistinguishable random data such that no classifier

can tell whether a randomly chosen input was drawn from the real data or the fake

data. And further, we can use approaches like that of Zemel et al. to ensure that the

new data are at once representative of the original data and also fair for individuals or

subgroups. Because synthetic data are generated at random, this technique is useful

when training a classifier on real data would create privacy concerns. Also, synthetic

data can be made public for others to use, although care must be taken to avoid

allowing others to infer facts about the underlying real data. Such model inversion

attacks have been demonstrated in practice (e.g., by Fredrikson et al. [152],3), along

3Although Fredrikson et al. conclude that their attack means that di↵erential privacy presents
an insurmountable choice when considered as a privacy vs. utility trade-o↵, their attack says much
less about the utility of di↵erential privacy than they claim—Fredrickson et al. determine that a
patient’s cardiac health status is holographically encoded in their dose of Warfarin, a blood thinner,
and therefore that robust techniques to obscure one reduce the utility of a model at producing the
other. In fact, this is not an argument against di↵erential privacy, but rather for training a model
that both preserves privacy and predicts e↵ectively. The authors did not investigate whether a more
robust fair modeling technique could have bridged this gap.
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with other inference or deanonymization attacks that allow sophisticated conclusions

without direct access to the data those conclusions are about. Such attacks are

summarized by Narayanan and Felten [283] and Narayanan, Huey, and Felten [284].

All of these approaches demonstrate that it is possible to build a wide variety of

definitions of fairness into a wide variety of data analysis and classification systems,

at least to the extent that a definition of fairness is known or can be approximated in

advance. While no bright-line rules exist that would allow the designer or operator of

such a system to guarantee that their behavior is compliant with anti- discrimination

law, it is certainly not the case that no options exist or that unconstrained use of

data analysis is necessary or even defensible.

Many of these approaches rely on the insu�cient notion of group fairness by

statistical parity. One way more research can help to address the problem of unfairness

in big data analysis, it is by expanding the repertoire of definitions of group fairness

that can be usefully applied in practice and by providing better exploratory and

explanatory tools for comparing di↵erent notions of fairness. From a law and policy

perspective, it would be extremely useful to system designers to have a set of rules,

standards, or best practices that explain what notions of fairness are best used in

specific real-world applications. Accountable algorithms can help bridge this gap by

allowing partial model transparency and by enabling certain design decisions to be

deferred and reviewed by an overseer.

A complementary notion to machine learning systems that can guarantee pre-

specified formal fairness properties is the work of Rudin on machine learning systems

that are interpretable [321]. Such systems generate models that can be used to classify

individuals, but also explanations for why those classifications were made. These ex-

planations can be reviewed later to understand why the model behaves a certain way,

and in some cases how changes in the input data would a↵ect the model’s decision.

These explanations can be extremely valuable to domain experts and overseers, who
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wish to avoid treating models as black boxes. Again, accountable algorithms comple-

ment such systems well by allowing partial transparency, oversight, and verification

for the interpreted classifications in individual cases.

Also related is the concept of the security of machine learning systems, or the

question of how robust such systems are against manipulation by interested parties.

For example, a system that classifies e-mail as spam vs. not spam should have the

property that a spammer should not be able to find an e-mail e�ciently which both

passes the filter and is e↵ective for the spammer. Lowd and Meek [253] investigate

the problem of quantifying the di�culty for an adversary to manipulate or game a

machine-learning-driven decision system, which they call adversarial learning. Bar-

reno et al. [27] give a broader overview of the security of machine learning systems

generally, showing that the process of making inferential predictions can be gamed

and may leak information about the underlying model or training data inadvertently.

These questions of robustness relate strongly to the question of how to interpret the

meaning of model outputs, including classification confidence levels: it has been shown

in several cases that models can easily be fooled by random test vectors, for example,

leading to the practice in activist communities of investigating “dazzle” makeup to

fool face recognition systems [317].

A di↵erent way to define whether a classification is fair is to say that we cannot

tell from the outcome whether the subject was a member of a protected group or

not. That is, if an individual’s outcome does not allow us to predict that individual’s

attributes any better than we could by guessing them with no information, we can

say that outcome was assigned fairly. To see why this is so, observe a simple Bayesian

argument: if the fact that an individual was denied a loan from a particular bank

tells you that this individual is more likely than you knew before to live in a certain

neighborhood, this implies that you hold a strong belief that the bank denies credit to
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residents of this neighborhood and hence a strong belief that the bank makes decisions

based on factors other than the objective credit risk presented by applicants.

Thus, fairness can be seen as a kind of information hiding requirement similar to

privacy. If we accept that a fair decision does not allow us to infer the attributes of a

decision subject, we are forced to conclude that fairness is protecting the privacy of

those attributes.

Indeed, it is often the case that people are more concerned that their information

is used to make some decision or classify them in some way than they are that the

information is known or shared. This concern relates to the famous conception of

privacy as “the right of the individual to be let alone” in that generally people are

less concerned with the act of disclosure for their private information but rather with

the idea that disclosure interrupts their enjoyment of an “inviolate personality” [360].

Data use concerns also surface in the seminal work of Solove, who refers to concerns

about “exclusion” in “Information Processing”, or the lack of disclosure to and control

by the subject of data processing and “distortion” of a subject’s reputation by way

of “Information Dissemination”, which Solove argues can be countered by giving

subjects knowledge of and control over their own data. It is hardly a wonder, in

this framework, that the predictive models of automated systems, which might use

seemingly innocuous or natural behaviors as inputs, would create anxiety on the part

of data subjects [338].

We can draw an analogy between data analysis and classification problems and

the more familiar data aggregation and querying problems which are much discussed

in the privacy literature if we consider decisions about an individual as representing

(potentially private) information about that individual. In this analogy, a vendor or

agency using a model to draw automated decisions wants those decisions to be as

accurate as possible, corresponding to the idea in privacy that it is the goal of a data

analyst to build as complete and accurate a picture of the data subject as is feasible.
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A naive approach to making a data set private is to delete “personally identi-

fying information” from the data set. This is analogous to the current practice of

making a data analysis fair by removing protected attributes from the input data.

However, both approaches fail to provide their promised protections, as summarized

by Narayanan and Felten [283] and Narayanan, Huey, and Felten [284] as well as by

Ohm [289]. The failure in fairness is perhaps less surprising than it is in privacy -

discrimination law has known for decades about the problem of proxy encodings of

protected attributes and their use for making inferences about protected status that

may lead to adverse, discriminatory e↵ects.

The work of Hardt [130,202] relates the work on fairness by Dwork et al. to work

on di↵erential privacy by Dwork [128, 129]. As di↵erential privacy is a well-founded

notion of protection against inferences and the recovery of an individual identity

from “anonymous” data, so is fairness through awareness a sound notion of fairness

for individuals and a theoretical framework on which to ground more complicated

notions of fairness for protected groups. Dwork and Mulligan [131] relate fairness and

privacy in a legal context, informed by the computer science techniques described in

this section.

The many techniques of building fair data analysis and classification systems de-

scribed in this section mostly have the property that they require decision makers to

have access to protected status information, at least during the design phase of the

algorithm. However, in many cases, concerns about misuse, reuse, or abuse of this

information has led to a policy regime where decision makers are explicitly barred

from holding such information, such that deployment of these technical tools would

require a policy change.4 The techniques described in Chapter 5 could be used to

4One example is the privacy regime created by the Health Insurance Portability and Account-
ability Act (“HIPAA”–110 Stat. 1936), which forbids the disclosure of certain types of covered
information beyond those for which the data subject was previously given notice and which limits
disclosure to covered entities subject to the same restrictions.
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make such a change less prone to engendering the very real concerns of data abuses

that have led to the current regime.

A summary of work on fair classification and its relationship to privacy can be

found in the anthology Discrimination and Privacy in the Information Society: Data

Mining and Profiling in Large Databases [110].

2.1.5 Systems for Cryptographic Assurance

The most common approach in the literature to assuring some property to an out-

side party is to use cryptography to enforce a well defined specification and to give

partial transparency into a process to outsiders. Our methods are very similar to this

approach, although we focus on enabling oversight so that the invariants enforced by

a system do not have to be decided in advance. Many such systems are described in

standard references such as Anderson [11].

A general approach to using cryptography to build secure protocols that balance

the disparate goals of mutually distrustful parties comes from Yao’s protocol for secure

two-party evaluation of arbitrary functions [369]. This technique has been improved,

generalized, formalized in di↵erent contexts, and made more e�cient by many authors

to create a robust literature on secure multiparty computation [37,81,86,91,180,214,

230, 231, 247, 257, 300, 334, 357]. Yao’s protocol even saw real-world deployment, if

only for a rather obscure sort of auction clearing for sugar beets in Denmark [57].

An alternative general method for secure multiparty protocols is due to Goldwasser,

Micali, and Widgerson [177].

Another general approach comes from the idea of fully homomorphic encryption,

or encryption that commutes with a su�ciently expressive set of operations that

one can construct meaningful computations on encrypted data. While the promise

of such technology was recognized at least as early as 1978 by Rivest, Adleman,

and Dertouzos [312], and encryption systems which allowed limited computation on
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encrypted data have been known since at least that time (the basic algorithm of

Rivest, Shamir, and Adleman is homomorphic for multiplication) of Goldwasser and

Micali the mid-1980s and others through the late 80s and 1990s [43,111,174,290,313],

no plausible constructions for fully homomorphic encryption were known until Gentry

introduced a candidate construction in 2009 [164] and Van Dijk et al. introduced a

second candidate in 2010 [355].

A further exciting breakthrough in this area comes with the release of a candidate

construction for indistinguishability obfuscation (IO), a notion due to Barak et al. [25],

from to Garg et al. [158]. IO can be viewed as a sort of dual problem to fully

homomorphic encryption, in which the computation is encrypted instead of the data.

Specifically, IO says that, given two circuits C1 and C2 with the same input/output

relation but a di↵erent internal implementation, there is no probabilistic polynomial

time adversary A that can distinguish between obfuscated versions of the two circuits

Obf(C1) and Obf(C2). Sahai and Waters [323] and later Boneh, Sahai, and Waters [65]

introduced the related concept of functional encryption, which is a technique similar

to identity-based encryption (See Chapter 3, Section 3.2.1), but where the extracted

key allows decryption of some function of the plaintext. Goldwasser et al. [172, 173]

showed that IO implies succinct functional encryption for all circuits. However, all

current constructions are implausibly ine�cient.

A brief review of the recent systems security literature yields several systems that

fit the model of cryptographically ensuring an ex ante specification [116,137,149,188,

234,260,297,346,354,359,363,376].

A prime example of using cryptography to guarantee certain socially im-

portant properties is the plethora of techniques for cryptographically enforced

end-to-end secure voting schemes citekarlof2005cryptographic, adida2006advances,

adida2006scratch, adida2008helios, ryan2009pret, gritzalis2012secure. In particular,

systems such as Adida and Rivest’s Scratch and Vote [7], Adida’s Helios [6] and Ryan
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et al.’s Prêt à Voter use cryptography and other tools to guarantee to voters that

their ballots satisfy certain invariants such as ballot casting assurance, the property

that each voter can learn that their ballot was correctly recorded and that the total

election count corresponds to the cast ballots. Many such systems and their specific

properties are surveyed in Adida [5] and Gritzalis [185].

Another common use of cryptographic assurance for particular invariants is to

guarantee that some process prevents certain types of information flow. These systems

are often confusingly called systems for privacy-preserving computation, when in fact

they only capture privacy in terms of preventing the flow of information. However,

as we describe in Section 2.1.4, privacy can encompass harder-to-formalize properties

such as fairness. We discuss yet further subtle properties of privacy throughout this

chapter. The relationship between privacy and accountability is explored some in

Section 2.1.8. In Chapter 7, we explore this relationship in the context of deploying

cryptography for social assurances and relate our approach to accountability to prior

e↵orts to use cryptography to guarantee privacy.

One well developed line of work in this area is the line of privacy-preserving

advertisement delivery systems [189, 344]. Such systems aim to allow the targeting

of users for advertisement purposes (in the sense of serving users who visit sites in

certain categories advertisements tagged by those categories) without revealing to the

advertiser or even the advertising network anything about the browsing behavior of

particular users. Two major systems, Adnostic by Toubiana et al. [344] and Privad by

Guha, Cheng, and Francis [189] bear specific mention and spawned a deep literature

of closely related protocols.

Another line of work in this area relates to the specific problem of collecting tolls

from drivers electronically without revealing to the tolling agency the location track of

any specific vehicle [23,259,301]. VPriv, by Popa, Balakrishnan, and Blumberg [301]

further considers the question of how to aggregate tracks so as to learn summary
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statistics about where they start and end. Systems such as PrETP by Balasch et

al. [23] give a more complete and practical solution for electronic tolling specifically,

while Meiklejohn et al.’s work considers how to preserve the privacy and security

guarantees (e.g., that tolls paid actually represent the tracks driven) of such systems

when drivers are allowed to collude [259].

A problem with the deployment of such systems is that the invariants they pre-

serve must reflect the realities of the environment to which they’re deployed. An

example of this mismatch is the “breaking the glass” problem in medical records sys-

tems [147], which requires that medical personnel be able to override access controls in

an emergency situation, something that is at least di�cult to achieve if record access

is controlled cryptographically. We consider the relationship between cryptographic

models of assurance and real-world social requirements further in Chapter 7.

2.1.6 Auditing Systems

The use of auditing and audit trails to verify the behavior of a system has an extensive

literature in computer science and beyond. We give a necessarily incomplete overview

of methods and application scenarios here. When audit trails or logs are kept, it is

important to take steps to ensure that they cannot later be modified to mask any

malfeasance. Crosby and Wallach give a technique for building cryptographically as-

sured tamper-evident logs [109]. Haeberlen, Kouznetsov and Druschel give a method

for detecting and rectifying misbehavior in distributed systems [194].

The technique of audits comes from the world of business financial controls, where

it still plays a large role. Anderson gives an excellent summary of the uses of audit

trails and the risks of misuse or over-reliance [11, Ch. 10]. The basic theme of

financial audit trails is the concept of the double entry ledger, which is a two-part

record of transactions processed by a system, where the parts are meant to be kept

under separate administrative control. By always o↵setting an entry in one part of
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the record (say, a credit) with a corresponding entry in the other (say, a debit of an

equal amount), maintaining the invariant that the books balance, such that the sum

total of all transactions in both parts is always zero. Separating concerns in this way

controls abuse, since a malefactor must maintain the balancing invariant and must

therefore forge two entries in distinct audit trails, which is presumably harder than

forging only one. Double entry bookkeeping has existed in commercial use since at

least the 14th century [240].

Auditing is required by several compliance regimes enshrined in law, such as the

Sarbanes Oxley Act5 and the Health Insurance Portability and Accountability Act.6

Such audits are often conducted by large accounting firms under a variety of di↵erent

standards for risk management. A survey of these standards is given by Colbert and

Bowen [101]. The goal of such audits is to define risks to an organization or process

and determine a formal owner for each, as well as to identify the proper means of

control or mitigation for organizational risks. Anderson also describes this process

and its risks [11, Ch. 25]. Blocki et al. give an game-theoretic model of compliance

as it relates to the likelihood of detection by an auditor for systems using artificial

intelligence [53]. We discuss compliance regimes further in Section 2.2.5.

Systems that enforce privacy requirements on large databases perform what is

referred to as query auditing or sometimes query overlap control to determine if a

query or its response will be unduly intrusive or reveal too much about the database.

Some techniques track what the querying party has already learned to determine

if additional disclosure will reveal a sensitive statistic. Many schemes exist for au-

tomating such analysis, which often bears resemblance to systems for information

flow and access control in operating systems, but which can be more inferential in

nature [90, 126, 225, 274]. Adam and Worthmann give the classic survey of these

techniques [4]. Nabar et al. give a more up-to-date survey [273].

5Pub.L. 107–204; 116 Stat. 745.
6Pub.L. 104–191; 110 Stat. 1936.
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Audits have long been a standard part of the operation of voting systems and the

approach taken by such systems to ensuring that results are verifiable and trustworthy

to voters, candidates, and sitting governments. Audits may take many forms: if votes

are recorded in multiple ways, such as electronically and separately on paper, these

records can be checked for consistency. If only one record exists, subsets of ballots

from similar geographies or from within particular precincts may be compared for

statistical similarity. Modern techniques advocate assigning a confidence level to the

outcome of an election through an audit, much as many measurements in science are

assigned confidence values based on the robustness of the equipment used and the

expected repeatability of the measurement. This technique is known by the confusing

term risk-limiting auditing. Hall gives an excellent bibliography of election auditing

literature, which we do not repeat here [199].

Intrusion detection systems can be seen as a form of auditing: they review network

tra�c and logs to discover patterns of misbehavior that are indicative of attacks and

exceptional access. Indeed, early work on intrusion detection was referred to in the

literature as audit trail analysis ; Lunt gives a survey [254]. A classic formal model for

intrusion detection analysis is due to Denning [117]. Bishop presents a standardized

format for audit trail information to improve analytic capability [48]. Other authors

provide systems for performing automated analysis of such information [191,204,255,

316].

We draw a distinction between auditing as it is traditionally conceptualized in

computer science and accountability as we define it for purposes of this dissertation.

Specifically, auditing is a technique that protects the operator of a system, and does

little to increase the trust in that system by users or subjects of decisions made by

that system. This is due to the fundamental fact that a user or subject cannot be

certain that an audit trail really exists unless that trail is made public or is regularly

reviewed by a competent and trusted authority. However, a system’s operator can
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always review an audit trail—indeed, this is generally the purpose of the audit trail.

Our definition of accountability requires that the existence of auditing information be

demonstrable to an outsider (see Section 2.1.9). Section 2.1.8 gives a more extensive

taxonomy of the use of all of the technologies in this chapter for accountability.

2.1.7 Measurement of Automated Decision Systems

There has been much interest in designing tools to keep complex automated decision

systems accountable by measuring and reporting their outputs, especially given dif-

ferential inputs which represent sensitive distinctions between users. This work can

be thought of as a kind of automatic reverse engineering of computerized decision

making systems with the explicit goal of discovering problems with accountability.

One branch of such work develops “information flow experiments” to derive “pri-

vacy through accountability”. The idea is that, by using privacy controls di↵erentially

and exposing a system to di↵erent profiles of data before observing its outputs, one

can determine how those data are being used internally and whether that use com-

ports with the stated purpose and practices of the system. The methodology for this

work is described by Tschantz et al. [347], while Datta, Tschantz, an Datta report

on measurement results of the system as applied to online advertising networks [112].

Datta et al. give a formal approach to assigning blame when computer systems

misbehave in a way that violates a desirable property [114].

Another branch of this work considers the concrete manipulability of ranking

systems such as search engines and advertising placement systems through “pollution

attacks”, or the introduction of targeted, inaccurate data to personalized systems to

change the way they present information to an end user. Xing et al. developed a

measurement system called “Bobble” for personalized search results [366] and used

their observations to develop a functional method for changing search result ordering

based on end-user personalization models [367]. Meng et al. demonstrate a similar
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methodology for personalized advertisements [261]. Later work in the same area

focused on modification of advertisements through the practice of ad injection, which

is either incorrectly adding advertisements to web pages where there are none, or

replacing existing advertisements with ones that benefit the attacker [343,368].

Englehardt et al. attempt to discover accountability problems in websites more

generally by comparing practices across sites with large-scale measurement [135].

This method has proved valuable, demonstrating the privacy implications of common

practices and exposing possibly undesirable behaviors by networks of websites, as

reported by Acar et al. [3] and Englehardt et al. [136].

2.1.8 Accountability

The term “accountability” has many di↵erent meanings in the computer science lit-

erature; it is used by di↵erent researchers to mean di↵erent things, and is not always

defined explicitly. We provide an overview of the sorts of uses this term sees in exist-

ing scholarly work within computer science. Section 2.2.7 describes the meaning of

this term in other literatures. Our own use of the term “accountability” is defined in

Section 2.1.9.

A survey of approaches to accountability and uses of the term is also given by

Feigenbaum et al. [146], which we follow here and supplement as necessary. Their

taxonomy breaks accountability into three dimensions, “time”, or when a mechanism

acts; “information”, or the extent to which an accountability mechanism implicates

privacy; and “action”, or the way in which an accountability mechanism operates.

Another broad perspective comes from the perspectives of the members of a panel

discussing accountability at the 1999 conference on Computer-Human Interaction,

organized by Friedman and Thomas [154]. The panel responses are especially valuable

to address the question of how technology can be used to improve trust in technology,

a core question of this dissertation addressed further in Chapter 7.
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As discussed in Chapter 1 and above in this chapter, most tools for assurance in

computer science are preventative in nature; that is, they aim to stop misbehavior

before it happens. Accountability mechanisms naturally operate in a complementary

manner, enabling the review of system actions after they have taken place. Indeed,

one goal of accountability mechanisms is to tie system actions to consequences if

those actions are inappropriate. This tying can involve a host of mechanisms, includ-

ing preventative security mechanisms such as access control measures, which allow

for after-the-fact attribution of system actions. The relationship between security

technologies and their interaction with humans is explored in depth in arguments

by Lampson [237], who argues for the complementarity of preventative, controlling

mechanisms and accountability mechanisms. Lampson also argues that because trust

is a local property, systems should reject or heavily sandbox messages and inputs that

are not su�ciently accountable in the sense that they don’t have enough information

to identify their origin if they turn out to have a bad side e↵ect [238].

Weitzner et al. [365] also compare the preventative and accounting approaches

and view them as complementary. Specifically, they relate their argument to public

policy, saying:

“[. . . ] access restriction alone is inadequate for addressing information

misuse on the Internet. An exclusive reliance on access restriction leads

to technology and policy strategies in which information, once revealed,

is completely uncontrolled. It’s like focusing all one’s attention on closing

the barn door and ignoring what might happen to the horses after they’ve

escaped. The reality is that even when information is widely available,

society has interests in whether or not that information is used appropri-

ately. Information policies should reflect those interests, and information

technology should support those policies.”
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Weitzner et al. advocate designing systems with policy awareness, or a machine-

readable encoding of public policy which enables compliance with stated rules. Their

focus on enabling systems to reflect public policy goals is similar to ours, however we

advocate the use of oversight to replace the need for policies to be encoded completely.

Risks and Failures

The earliest notions of accountability in computer science was as a collection of fail-

ure modes of deployed computer systems. Such e↵orts were undertaken in part to

counter public perception that computers are infallible, perfect arbiters of consequen-

tial processes. A very complete and extensive collection of actual failures of computer

systems has been maintained since 1985 by Neumann in the RISKS forum and its

weekly digest [308]. One widely cited example of the review of failures and associated

risks in automated decision systems comes from a set of accidents in the operation

of the computer-controlled Therac-25 radiation therapy system. The Therac-25 gave

very large radiation overdoses to at least six patients, resulting in three deaths di-

rectly attributed to the overdose. Leveson and Turner give the classic overview of the

accidents, the engineering factors that led to them, and their aftermath in terms of

improving safety culture and requirements in medical device engineering [245]. An-

other widely reviewed software failure was the explosion of the maiden flight of the

Ariane 5 rocket. Lions reported on the failure for the inquiry board of the Euro-

pean Space Agency [248]. Many smaller failures, even with large consequences, go

unnoticed and excused, however.

Distributed Systems

Accountability is used in the distributed systems literature to mean various disparate

things, from the simple idea that the resource usage of a system should be mea-

surable for billing purposes, as proposed by Reed et al. [307]; to stronger and more
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complex notions that a system should “[maintain] a tamper-evident record that pro-

vides non-repudiable evidence of all nodes’ actions” as proposed by Haeberlen in

PeerReview [194]. Haeberlen has developed several systems under this definition of

accountability, including accountable virtual machines [193], a cryptographic proto-

col and system for accountable randomized processes citecsar, and a proposal for

accountable cloud services [192].

Other authors have considered accountability for distributed systems as the ability

to associate an action with a responsible entity. Andersen et al. [10] introduce the

Accountable Internet Protocol as a replacement for the standard Internet Protocol

to solve this problem. AIP uses cryptography to provide self-certifying addresses for

end Internet hosts, which allow robust information on packet origins to be learned

from packet headers. A similar approach is taken, with similar goals, independently

by Argyraki et al. [13].

Yumerefendi and Chase describe a framework for systems that meet accountabil-

ity properties beyond the usual properties in security of confidentiality, integrity,

and availability [370]. Specifically, they propose that accountable systems must make

actions undeniable in the sense that they are always strongly associated with a partic-

ular actor, certifiable in the sense that an outside observer (a client, peer, or external

auditor) can verify that the service is behaving correctly, and tamper-evident in the

sense that attempts to corrupt the system will be detectable with high probabil-

ity. Yumerefendi and Chase build a system satisfying these properties for network-

available storage [372]. They also discuss the role of accountability in designing

distributed systems [371].

Accountability in distributed systems is similar in flavor to research on provenance-

aware systems, which track ownership history and a full derivation for objects they

manage, a concept that originates in research on databases [74], but has grown to

make a small sub-field of systems research. Muniswamy-Reddy, Holland, and Seltzer
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present such a system for file storage [270] and Muniswamy-Reddy, Macko and Selzter

give a related system for cloud computing [271]. A summary of similar systems can

be found in Moreau et al. [268].

Cryptography

Many cryptographic systems aim to have strong accountability properties. These are

particularly important for systems that make use of anonymity or where an actor may

be known only as a member of a particular group. We describe three basic types for

such systems: accountable electronic cash systems, anonymous blacklisting systems,

and accountable group signatures.

Electronic cash (“e-cash”) systems are perhaps the best example of the usefulness

of accountability in cryptographic protocols. Such systems, introduced by Chaum

in 1982 [83, 84], use anonymous credentials as capabilities that enable the transfer

of value among users. Because many early designs required a central bank player

to maintain information on which credentials had been redeemed (“spent”), a major

design issue was double spending, or the multiple redemption of valid credentials. This

led to a desire for systems where such malfeasance could be punished by revealing the

identities of users who attempt a double spend. A later scheme by Chaum, Fiat, and

Naor achieves this [87]. Later constructions by Camenisch and Lysyanskaya [76,77] go

further and allow punishment by way of revoking outstanding credentials (“tokens”

of value) issued to violators. Camenisch, Hohenberger, and Lysyanskaya presented

another system focused specifically on accountability in e-cash systems, especially as

it relates to privacy [75].

Later electronic cash systems such as Bitcoin [66, 275] attack the problem in a

very di↵erent way, replacing the centralized authority that checks for double spend-

ing with a public ledger. Because all transaction flows are public, accountability

is straightforward. However, in Bitcoin, transactions are designed to be irreversible,
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which makes punishing bad actors a challenge. Building useful accountability systems

for Bitcoin-like systems, especially while maintaining privacy, remains an important

open problem.

The PEREA system of Tsang et al. exemplifies anonymous blacklisting systems,

in which participants who commit a violation are blacklisted without being identi-

fied [345]. This is rather similar to the e-cash systems already described, although

PEREA participants who misbehave are not identified—they are simply blacklisted,

meaning their credentials for participation are revoked. Henry and Goldberg give a

formal model of requirements for such systems [205].

Chaum and Van Heyst introduced the important concept of group signatures in

1991 [88], which allow any member of a group to sign a statement. Related to these

are threshold signatures [335] and multisignatures [58], which require multiple partic-

ipants to create. However, structures where many people sign or may have signed a

message create new accountability issues that do not arise when a signature can only

originate with a single signer. To address this, Micali, Ohta, and Reyzin introduced

“accountable subgroup multisignatures”, which explicitly have accountability as a

goal and provide identifiability of individual signers from signed messages alone [264].

Many authors have considered accountability for the publication of certificates in

a public key infrastructure, arguing that a PKI could equivocate, or present di↵erent

certificates to di↵erent users (i.e., present di↵erent keys for the same name, enabling

man-in-the-middle attacks). Laurie, Langley, and Kasper present a standard for

cryptographically binding a certificate authority to a particular set of certificates

e�ciently [239]. Ryan gives a slightly more complex system with the same goals but

more features [322]. Melara et al. build a similar system that aims to support large

numbers of keys and large amounts of key churn, as might be expected for an e-mail

or online chat service [260].
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Reputation Systems

Accountability is often considered to be about assigning ownership to actions in a

system, so that blame can be assigned to undesirable actions. In this way, systems

for accountability are similar to reputation systems, which have been used to manage

everything from how sensor networks should route data [73, 375] to interactions be-

tween customers of large online services [141, 310]. Extensive surveys may be found

in Resnick et al. [309] and Jøsang, Ismail, and Boyd [217].

Accountability and Privacy

Accountability is often used in the context of discussing privacy, since many privacy

problems arise from problematic uses of data, which cannot be directly and verifiably

controlled in the same way that collection can. Verifiability is the more important

problem—a company with lots of private customer data may well follow very good

practices, limiting disclosure of data to only those people and services within the

company that actually need them, storing the data encrypted when they are at rest,

and otherwise following accepted best practices for handling data. However, these

practices cannot be verified by an end user or outsider without significant extra e↵ort

on behalf of the data holder. Pearson and Charlesworth argue that procedural and

legal solutions, as a complement to appropriate technical measures, can provide the

necessary accountability to convince end users that their data are being handled

in appropriate ways. Formal models for privacy protection and accountability are

summarized below. Datta provides a survey of this literature from a computer science

perspective [113].

From a more theoretical perspective, Feigenbaum et al. [146] examine the notion of

accountability as responsibility and blame for its privacy implications, asking whether,

in bringing accountability to a system might damage privacy if it requires more robust

notions of identity or reveals information about the behavior of actors in the system,

53



either in the case of a violation or even during normal operation, especially if such

information is disclosed beyond the system, either publicly or to an authority.

Formal Models

Many authors have described formal models of accountability and responsibility.

Feigenbaum, Jaggard, and Wright give a formal model similar to the one we use,

where system actions are recorded in event traces and these event traces are reviewed

for correctness automatically or by an authority [145]. Feigenbaum et al. postulate

that system operators respond to utility functions that trade o↵ their mission-oriented

objectives with the cost of punishment for inappropriate action. Feigenbaum indepen-

dently analyzed the question of whether such a formal model can be usefully deployed

to address real world political oversight issues [144].

Barth et al. [29] give a formal model relating privacy practices in business pro-

cesses to notions of utility for data use, o↵set by punishment for inappropriate uses.

Separately, Barth et al. define a formal model for privacy as contextual integrity, a

philosophy of privacy which views information use as being morally tied to the con-

text of the information’s collection and use [28]. Tschantz, Datta, and Wing give a

formal model for identifying restrictions on information in privacy policies, useful for

defining compliance predicates for system oversight [348].

Küsters, Truderung, and Vogt give a formal model for accountability in crypto-

graphic protocols, relating it to verifiability, or the property that some invariant can

be checked. Their model, which focuses specifically on a process’s goals, separates the

idea that an invariant is verifiable from accountability for that invariant, a stronger

notion that requires the ability to make a judgment that blames a specific party if

the invariant is violated [235]. Datta et al. give a more detailed formal model of how

to assign detailed blame to specific program actions [114].
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Jagadeesan et al. give a formal model of accountability through after-the-fact

auditing based on blaming individual participants in a distributed system for violating

some desirable invariant [212]. This is similar to the Barth et al model of privacy

auditing for business practice compliance [29].

Bella and Paulson give a formal model of accountability protocols in which pro-

tocols must produce for each participant “evidence, typically digitally signed, about

actions performed by his peer” [33]. They give implementations of two concrete pro-

tocols along with a formalization of those protocols in their model which is proved

correct in the Isabelle theorem prover. The ultimate accountability goal is to bind

actions to identities. Similarly, Kailar gives a logic for analyzing accountability prop-

erties of protocols and considers example applications of this logic to some electronic

commerce protocols [219]. Kailar’s framework focuses on accountability as the ability

for a third party to associate the originator of an an action to the action. Backes et

al. also used protocol logics similar to classical authentication logics to investigate

accountability properties in contract-signing protocols [20].

Tamper-Evident Systems

Tamper evidence is another approach taken by computer scientists to providing ac-

countability. It is useful especially in producing audit trails which can be verifiably

shown not to have been modified. A general technique for this was suggested by

Crosby and Wallach [109]. Suh et al. describe AEGIS, an architecture for tamper-

evident computing on systems where only the processor is trusted [342]. Waldman,

Rubin, and Cranor describe Publius, a system that uses tamper-evidence properties

to guarantee censorship resistance [358].
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Engineering Ethics

In an e↵ort to provide accountability for professional members of the technology in-

dustry, the Association for Computing Machinery (ACM) and the IEEE Computer

Society jointly adopted a code of professional ethics, after many years of discussion in

the computer science community [178, 179].7 Leventhal, Instone, and Chilson report

on their study of attitudes towards ethics among computer scientists and relate these

attitudes to a comprehensive review of literature on ethical practices in the field [244].

Johnson writes more broadly about ethical issues involving computers and computer-

ization [215]. Narayanan and Vallor argue that, if we want to expect professionals in

the technology industry to be equipped to act ethically, ethics must become a formal

part of computer science curricula at the university level and before, despite the fact

that this has not yet happened [285].

2.1.9 Our Definition of Accountability

The Oxford English Dictionary defines “accountable” as

“Chiefly of persons (in later use also organizations, etc.): liable to be

called to account or to answer for responsibilities and conduct; required or

expected to justify one’s actions, decisions, etc.; answerable, responsible.”8

In particular, the dictionary gives “answerable” as a close synonym. This is consistent

with the definition given by the Merriam Webster dictionary for “accountable” as

“required to explain actions or decisions to someone” or “required to be responsible

for something”. Both definitions focus on the idea of accountability as the ability to

explain actions to an oversight body or to the public, leaving implicit the question of

whether accountability implies consistency with the legal, political, or social norms of

7The most recent version of the code can be found at http://www.acm.org/about/se-code/.
8“accountable, adj.” OED Online. Oxford University Press, June 2015. http://www.oed.com/

view/Entry/1198
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those to whom a process or entity is accountable. For the purposes of this dissertation,

we use a slightly stricter definition of accountability which requires this consistency.

Definition 2 (Accountable). We say that a process or entity is accountable for a

decision if that process is consistent with the legal, political, and social norms that

define its context, and this fact is publicly evident, either because such consistency

can be readily determined using public information or because an entity empowered

and trusted to define such consistency (e.g., a court, a legislature, or other desig-

nated authority) can be shown to have the necessary information to determine this

consistency.

In particular, we consider in this dissertation the setting of a decision authority

making decisions using a set policy which are particularized to a set of decision sub-

jects. In this setting, under our definition of an accountable decision process, all of

the following properties are necessary :

(i.) the authority must be committed to its policy in advance;

(ii.) the result asserted by the authority must be the correct output of the authority’s

committed policy when applied to an individual decision subject;

(iii.) any randomness used in the decision policy must be generated fairly; and

(iv.) if necessary, the authority can reveal its policy to an oversight body for exam-

ination later, without revealing decision subject’s private data, and that body

as well as each decision subject can verify that the revealed policy is the one

that was used to make the decisions in question.

The question of what properties are su�cient to define an accountable process is

di�cult and, being an inherently political question, possibly un-answerable. We at-

tempt an answer in Chapter 7, where we describe how to design automated processes

so that they are accountable under the definition given here.
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2.2 Related Concepts from Fields Outside Com-

puter Science

In this section, we summarize concerns related to the governance and oversight of com-

puter systems and algorithmic decision processes as they have been conceptualized

in literatures beyond computer science. This discussion has largely been centered

around the concept of transparency, the idea that the design of and inputs to the

computer system (or at least assertions about them) can or should be made either

to an oversight body or to the public. A special notion of transparency that has

gained particular purchase for its similarity to established social science techniques

is reverse engineering, described in Section 2.2.4. Automated methods for measur-

ing and thereby reverse engineering the decisions of complex decision systems have

been described by computer scientists, as we describe in Section 2.1.7. Beyond trans-

parency, others have called for aggressive oversight or enforcement of existing legal

requirements, as we describe in Section 2.2.5. Current doctrine generally protects two

categories of legal harm that might be inflicted by inadequately governed computer

systems: violations of the due process rights of decision subjects (described in Sec-

tion 2.2.2) and problems with fairness, either of the decision outcomes or the process

itself (described in Section 2.2.6).9 We start in Section 2.2.1 with a broader framing of

governance problems, including ancient and modern scholarship on the meaning and

function of rules in a society, and general approaches for addressing them. We finish

this section with a discussion of the use of the term “accountability” as it applies to

automated systems when described outside of computer science. For each concept

in this section, we begin by explaining the concept and its history broadly and then

turn to related literature specific to governing automated decision systems.

9While scholars of due process have argued that due process rights can also protect against certain
substantive notions of unfairness, we separate out, somewhat arbitrarily, the notion of procedural
regularity, which the tools introduced in Chapter 5 are especially suited to assuring.
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2.2.1 Philosophy of Law, Rule of Law, and Software as Law

Philosophers of law and government have long postulated that consequential pro-

cesses should be governed and should be accountable to a well defined set of rules

and laws. The general principle is that well defined rules create legitimacy, since those

a↵ected by some process do not feel that their treatment was arbitrary. The main

lesson from this scholarship is that the rules under which a process operates should

be well understood and substantially complete in advance but also flexible enough

to accommodate any unexpected situation. This gap is bridged by a judge who is

politically empowered to determine how rules apply in a given case but who is also

politically constrained to uphold the rules. For example, Aristotle wrote in Politics

that “it is more proper that law should govern than any one of the citizens”, arguing

that rule of law is a supreme principle of e↵ective governance. Aristotle also recog-

nized that complete rules cannot be laid out in advance and that some discretion and

oversight by a judge or other accountable person is necessary, saying “the law having

laid down the best rules possible, leaves the adjustment and application of particulars

to the discretion of the magistrate” [14]. Later, these ideas were coalesced by (among

others) Hobbes in Leviathan [208], Locke in Second Treatise of Government [252], and

Rousseau in The Social Contract [320] as social contract theory, in which governance

processes achieve trust and legitimacy through “the consent of the governed”. That

is, people come to trust consequential processes because they can hold those processes

accountable by revoking their consent to participate.

These ideas wound their way through the philosophers and founding documents

of Western civilization (including the 1215 Magna Carta and the 1787 United States

Constitution)—a summary of this development is beyond the scope of this section—to

reach modern-day legal scholarship and jurisprudence. There are several contempo-

rary schools of thought on the purpose and function of law. We summarize a few

relevant theories here; a full exposition of these theories is beyond the scope of this
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dissertation. A summary of the meaning of rule of law across modern legal systems

can be found in Bingham [47].

One relevant framing of how law should govern consequential processes is given by

Lon Fuller in his widely cited The Morality of Law [156]. Fuller describes the goals

and purposes of law and legal systems in terms of eight possible modes of failure:

(i.) The lack of rules or law, leading to ad hoc decisions and inconsistent adjudica-

tion.

(ii.) Failure to publicize or make known the rules of law.

(iii.) Unclear or obscure legislation that is impossible to understand

(iv.) Retrospective legislation, i.e., legislation that applies new rules to past facts

and circumstances.

(v.) Contradictions in the law.

(vi.) Demands that are beyond the power of the subjects of the law to fulfill.

(vii.) Unstable legislation, i.e., legislation that changes too often to be meaningfully

disclosed or understood.

(viii.) Divergence between adjudication or administration and legislation.

Accountable algorithms address many of these concerns directly, and can address

all of them in concert with other technical tools from both computer science and

the theory and practice of governance and oversight. In this way, the techniques

described in this dissertation can be deployed to reconcile the perceived gap between

the governance of computerized decision making systems and systems operated by

humans. See Chapter 7 for a more detailed explanation of this argument.

Fuller sees the moral e↵ects of law as the source of law’s binding power, imbuing

the social contract with a moral dimension. This stands in contrast to alternative pos-

itivist theories of the law, such as H.L.A. Hart’s famous counterpoint to Fuller [203].
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Positivists view laws as a social construction, arguing that laws exist independently

of their merit or whether any system of law conforms to a “natural” or “fundamen-

tal” notion of justice, democracy, or rule of law. Early positivists framed of rules as

commands which exist independently of any fundamental normative grounding. This

maps well onto many critiques of automated decision systems: critics of automated

decision systems often argue that such systems are consequential and have the power

to a↵ect or control the interaction between people and the rest of the world, but that

automated systems exist independent of normative or legal frameworks.

Yet another school, interpretivism, argues that the legally significant actions and

practices of political institutions can modify the rights and obligations of others under

the law. Interpretivism is famously associated with Ronald Dworkin [132,133].

Finally, scholars of legal realism argue that law is operationalized through funda-

mentally political institutions and therefore is not independent of political discourse.

Developing a framework relating the function of law to automated processes,

Lessig, in his seminal Code and its follow-up Code: Version 2.0 [242, 243], develops

the idea that software itself can regulate personal conduct and that such regulation is

complementary to legal regulation. Lessig argues that the two kinds of regulation are

not incompatible, but rather part of a larger scheme of regulatory forces that include

law, norms, software code, and markets. Lessig suggests that, while many activities

are regulated by software, this regulation is ultimately subordinate to a larger reg-

ulatory framework that includes laws, norms, and markets as well. Lessig refers to

software code as a kind of law and suggests that choices in the design of computer

systems can create “Architectures of Control”, coded into products, which shape and

become part of the way people interact with the world.
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2.2.2 Due Process

Another related concept from the law is that of due process, the idea that rights,

as cognized by the legal system, cannot be stripped or ignored except under spe-

cific, preconceived legal processes. Like the philosophy of law, due process has a long

history in legal scholarship: it dates back at least to the 1215 Magna Carta, which

stipulates that “No free man shall be seized or imprisoned, or stripped of his rights or

possessions, or outlawed or exiled, or deprived of his standing in any other way, nor

will we proceed with force against him, or send others to do so, except by the lawful

judgment of his equals or by the law of the land.”10 The United States constitution

provides similarly in the Fifth and Fourteenth amendments: “[N]or shall any person

. . . be deprived of life, liberty, or property, without due process of law . . . ”11 Courts

have interpreted this phrase to protect procedural regularity in civil and criminal legal

process, or the idea that all people subject to some process must be subject to the

same version of the process and be treated according to the rules of the process. In

certain cases, due process is also interpreted to protect well as certain substantive

forms of fairness, but our focus will be on procedural regularity. The tools introduced

in this dissertation (specifically, in Chapter 5) are very well suited to assuring proce-

dural regularity. Additionally, it is fundamentally impossible to provide assurances of

a substantive invariant to subjects of a decision process unless those subjects already

have assurance that the process satisfies procedural regularity. We address the enor-

mous topic of substantive notions of fairness in Section 2.2.6. Section 2.1.4 addressed

how fairness has been conceptualized within computer science.

Some of the earliest work on oversight of automated decision making comes from

Danielle Keats Citron’s article “Technological Due Process” [94], which investigates

10Text of the Magna Carta, http://legacy.fordham.edu/halsall/source/magnacarta.asp.
11Text of the United States Constitution, Amendment V. Amendment XIV reads similarly, but

applies the requirement to the states individually. The full text is available online through the
Cornell Legal Information Institute, https://www.law.cornell.edu/constitution.
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whether and how automated processes satisfy the requirements of due process. Citron

argues that the traditional, pre-computerization approaches to making and adjudicat-

ing rules are “rapidly becoming outmoded” because traditional procedural safeguards

are circumvented both by the way computer systems are developed and in the way

they are applied in particular cases. This core argument stems from a reflection on

case studies of failures in automated systems for determining public benefits. These

failures, in turn, resulted from a combination of inadequate specification of the com-

puter programs in question, inadequate testing, and inadequate oversight to discover

and ameliorate the problems before the systems were deployed for real use. Cit-

ron argues that such problems can be violative of due process rights, since the rules

ultimately used by the computer system di↵ered in substance from the rules duly

enacted by the policy process, meaning that they were not subject to the required

public review and comment processes. Citron extends some of these same critiques in

later work with Pasquale [97] that examines private-sector decision making. However,

due process as a legal concept applies primarily to actions taken by the state. Still,

although it may not be legally required, a certain modicum of uniformity in process

and procedural regularity is desirable even for privately ordered decisions, as we will

investigate in Chapters 5 and 6.

Pasquale also addresses due process in automated decision making systems as part

of a larger investigation of the nature of governance for such systems. He regularly

mentions due process as a goal of such governance, and suggests that due process

rights and obligations could be applied to private operators of computer systems as

well as to the government, a regime which is not without precedent [294].

2.2.3 Transparency

A straightforward solution to the problem of verifying procedural regularity is to

demand transparency: if the code and input-output pairs are public, it seems easy to
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determine whether procedural regularity is satisfied. Indeed, transparency or partial

transparency of computer systems can be a helpful tool for governance in many cases,

for example for televised lotteries, which have completely public rules and which pick

verifiably random inputs using a publicly viewed ceremony. However, as we will

explain in this section, relying on transparency alone is a näıve approach that cannot

provide accountability in all situations.

Transparency has often been suggested as a remedy to accountability issues for au-

tomated decision making systems. In his book The Black Box Society [294], Pasquale

calls directly for operators of automated decision systems to provide detailed infor-

mation on their behavior so as to provide checks on socially unacceptable outcomes.

Citron also suggested that transparency could alleviate the due process problems she

identified in government benefits systems [94] and systems that rate consumers for

credit or other business purposes [97]. Citron also argues that all software that makes

consequential administrative decisions must be open sourced [95].

Despite these many calls for transparency as a sovereign remedy to problems of

accountability in automated decision making systems, however, transparency alone is

not su�cient to provide accountability in all cases. Transparency is useful and often

extremely valuable, but does not serve the goals of its proponents entirely or without

other techniques. The tools introduced in Chapter 5 rely on partial transparency

(that is, transparency of only certain facts, or verifiable transparency only to certain

designated parties) to achieve accountability. Chapter 7 describes in more detail how

these tools, and partial transparency in general, provide for accountable automated

processes.

First and foremost, it is often necessary to keep the source code for computer

systems and their data secret to protect business interests, privacy, or the integrity of

law enforcement or investigative methods. Secrecy discourages strategic behavior by
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participants in the system and prevents violations of legal restrictions on disclosure

of data.

Second, while transparency allows for static and at least some dynamic analyses

of source code (described in more detail in Section 2.1.2), those methods are often

insu�cient to verify properties of programs if those programs have not been designed

with future evaluation and accountability in mind.12

Third, transparency does not guarantee that an output can be replicated. Com-

puter systems often interact with their environment, for example by examining other

running processes, reading the time of day, accessing a changing data store, or incor-

porating user input. Further, many algorithms require randomness, and are usually

implemented by polling a system device (e.g., a piece of hardware, a software sub-

system designed to provide high-entropy bits such as /dev/random or /dev/urandom

on UNIX-like systems). If the environmental factors encountered by a computer sys-

tem cannot be precisely replicated, then the output cannot be replicated either. An

easy solution is to redesign an automated process to make any environmental inter-

action an explicit input, which works as long as the input can be recorded when the

system is run. However, this does not address the problem of determining that the

input recorded is a correct reflection of the environment or satisfies some other prop-

erty, such as being a randomly chosen bit string. In Chapter 3, we survey various

approaches to the problem of providing verifiable random bits from the computer sci-

ence literature. Still, verifiability can easily su↵er unless care is taken. With a näıve

approach, a corrupt decision maker could construct a plausible but mis-representative

audit trail: for example, a system implementing a random choice could be run mul-

tiple times until the desired outcome was reached, and then only the record of the

12In particular, Rice’s Theorem [311] states that it is undecidable to determine any nontrivial
property of a program, for a very general definition of “nontrivial”. More precisely, given a set of
languages S, S is nontrivial if there exists a Turing machine that recognizes languages in S and
there exists a Turing machine that recognizes languages not in S. Then the theorem states that it
is undecidable to determine if the language recognized by an arbitrary Turing machine lies in S.
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final run kept for audit purposes. A simple lottery provides an excellent concrete

example of this problem: a perfectly transparent algorithm—use a random number

generator to assign a number to each participant and have the participants with the

lowest numbers win—yields results that cannot be reproduced or verified because the

random number generator will produce new random numbers when it is called upon

later.

Fourth and finally, systems that change over time cannot be fully understood

through transparency alone. System designers regularly change complicated auto-

mated decision processes—search engine rankings, spam filters, intrusion detection

systems, or the algorithms that select website ads—in response to strategic behavior

by participants in the system. The computer systems that choose which social media

posts to display to users might respond to user behavior. “Online” machine learning

systems can update their internal predictive model after each decision, incorporating

new observations as part of their training data. Even knowing the source code and

data for such systems is not enough to replicate or predict their behavior–we also must

know precisely how and when they interacted or will interact with their environment.

Pasquale argues a realist version of this last point, observing that transparency

requirements are often defeated by making the processes themselves more complicated

so that disclosures cannot be properly understood. He argues that this has happened

in response to disclosure regimes in the financial industry and for information privacy

practices online.

Accountable algorithms make use of transparency to achieve accountability, but

in a focused way, making transparent the things which may be published while using

cryptography to verify the correctness of the things which cannot be. Further, ac-

countable algorithms use cryptography to limit the disclosure of facts about a systems

to parties that are authorized to learn them, while providing guarantees to the public

that this disclosure has been performed correctly and that the correct facts have been
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disclosed (e.g., that the decision policy disclosed to an oversight body is the policy

used to make decisions about particular users). We give more detail on this argument

in Chapter 5.

2.2.4 Reverse Engineering

For many authors, the most obvious approach to holding automated decision systems

to account is to reverse engineer their behavior, so as to test them for unacceptable

behavior. This approach is similar in its goals to the approach of transparency, de-

scribed in Section 2.2.3, in that it attempts to examine the acceptability of a system’s

behavior based on its operation, specifically based on its input-output relation. Re-

verse engineering can be viewed as a form of forced transparency or a way of imposing

transparency on systems that do not disclose the nature of their operation in detail.

Reverse engineering is espoused as a solution to problems of oversight and ac-

countability by many authors in many fields. We describe the use of measurement

and reverse engineering techniques for complex automated decision making systems as

applied within computer science in Section 2.1.7. Here, we summarize the arguments

made by proponents of reverse engineering automated decision systems by scholars

in other fields.

Diakopoulos [121] describes the reverse engineering of several specific computer

systems and considers the applicability of this methodology for journalists more gen-

erally, observing that it is di�cult to su�ciently test systems due to lack of human

and computational resources. Further, testing only specific inputs and outputs gives

a limited view of the correctness or rightness of the operation of a particular computer

system and its deployment in the real world. Diakopoulos sees computer systems as

inherently related to their human creators, and believes that any attempt to consider

the accountability of such systems must consider the intent of anyone involved in the

system’s design or deployment as well as the agency of anyone who interacts with
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the system in a decision making capacity, even those who merely read o↵ and act

on a system’s output. Diakopoulos recognizes that transparency is an imperfect so-

lution to holding automated decision systems accountable, noting several situations

where the interests of the operator of a system conflict with the interests of those

who would benefit from transparency, such as when a system has legitimate secrecy

goals or when a decision maker’s interests, narrowly construed, oppose the interests

of decision subjects. However, Diakopoulos embraces transparency when it is possi-

ble and reverse engineering when it is not as enabling tools for journalists to review

important systems deployed in practice.13

Pasquale [294] argues in favor of using reverse engineering to examine the actual

behaviors of complicated systems such as search engines, advertising exchanges, credit

scoring systems, and systems which automatically trade financial securities. In other

work with Citron [96], the authors advocate reverse engineering, or at least observa-

tion, for tracking the flow of sensitive intelligence information between collaborating

agencies and through government and private-sector collaborations as a method to

create accountability.

Sandvig [327] argues that unacceptable behavior by automated decision systems

could be discovered by use of the auditing methodology from social science, in which

researchers who cannot control a process carefully control the input data and observe

di↵erential results, e↵ectively forcing the transparency of a system’s input/output

relation. Sandvig applies this methodology to the Facebook news feed, in an at-

tempt to determine how posts are selected for viewing. This sort of auditing for

reverse-engineering unacceptable behavior has also been automated on a larger scale

by computer scientists to investigate the manipulability of search engine rankings and

the sorts of targeting performed by advertising systems, as described in Section 2.1.7.

13A more detailed version of Diakopoulos’ argument is given in his report for the
Tow Center for Journalism, http://www.nickdiakopoulos.com/wp-content/uploads/2011/07/
Algorithmic-Accountability-Reporting_final.pdf.
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However, as noted in Section 2.2.3, we do not believe that transparency alone—

whether voluntary on the part of a decision maker or introduced forcibly by the use

of reverse engineering—is su�cient to provide accountability. Indeed, this method of

“auditing algorithms” can be viewed as a form of black-box dynamic end-to-end test-

ing, a very weak form of evaluation. Instead, we advocate achieving accountability

by designing important decision processes for oversight by a politically empowered

authority, as described in Chapter 7. The techniques of Chapters 4 and 5 are valuable

tools for such designs, and can enable evaluation that is similar to white- or grey-box

testing. Reverse engineering, or at a minimum the monitoring of actual outputs of

such systems, can be a useful tool for designing oversight-driven processes, however,

especially in cases where the process under investigation is hostile to oversight or

where no trusted oversight body exists.

2.2.5 Oversight and Enforcement

As mentioned, the concept that one governing body should have jurisdiction to review

another is fundamental to the founding documents of modern Western civilization.

The famous “security clause” of the Magna Carta, signed in 1215 to check the power

of the king, allowed a council of 25 barons to notify the king when an o�cial action

transgressed the limits of acceptable behavior and for the barons to seize the king’s

assets (by force, if necessary) if he did not make amends to their satisfaction within a

fixed period of time. The authors of The Federalist Papers drew on this history to ar-

gue in favor of the ratification of the United States constitution, supporting strongly

the notion that di↵erent functions of government should be separated into di↵erent

institutions, with these institutions holding formal checks and balances against each

other [319, Papers 47–51]. Judicial review of statute law followed from these docu-

ments in the United States [258], but not in the United Kingdom. Meanwhile, the

United States Congress exercises regular oversight hearings and reviews government
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operations through its system of committees. The constitution only implies powers

and duties of congressional oversight and investigation, however—these powers are

not enumerated functions of Congress.14

On the executive side, many agencies are tasked with enforcing existing laws

against private citizens and corporations. For a model of how executive agency deci-

sions relates to the congressional oversight process, see Weingast and Moran [364].

For automated decision making, the Federal Trade Commission is perhaps the

most salient, although other agencies, such as the Securities and Exchange Commis-

sion or the Consumer Financial Protection Bureau may have jurisdiction depending

on the nature of the decision. Notably, the FTC has expressed interest in reviewing

the fairness of automated decision making, having held a workshop on the impact of

big data decision making processes on traditionally marginalized communities.15

Expressing concerns similar to Citron’s about the due process implications of

automated decision making, Bamberger argues that the emergence of automated sys-

tems to judge a company’s compliance with the law can lead to a gap between what

a court would find (non)-compliant and the judgment made by an automated sys-

tem when programmers interpret the law while designing and developing computer

systems, [24]. Bamberger argues that law enforcement (or at least e↵orts for legal

compliance within organizations) by automated decision processes is inherently lack-

ing, as the technologies that enable it are not, and cannot be, vested with the same

level of trust as political institutions.

Citron [94,97] and Pasquale [293,294] argue similarly for the inadequacy of current

enforcement regimes. Pasquale in particular calls for stronger penalties and norma-

tive regulations for automated decisions, in contrast to the current model under which

14For an overview of the congressional committee system, its powers, and their authorities, see
the Final Report of the Joint Committee on the Organization of Congress from December, 1993:
http://archives.democrats.rules.house.gov/Archives/jcoc2.htm.

15See an agenda and complete video of the event at the FTC’s website: https://www.ftc.gov/
news-events/events-calendar/2014/09/big-data-tool-inclusion-or-exclusion.
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decision makers simply assert their policies and are typically punished only for vio-

lating their self-described promises. Pasquale is particularly critical of industry “self

regulatory” regimes, under which many players in the same industry cooperate to

produce a set of “best practices”, or standardized promises [295].

Accountable algorithms improve and complement current regimes for oversight

and enforcement by enabling oversight bodies and law enforcement agencies to pre-

cisely relate the facts of a particular decision to a justification for that decision held

in an audit trail (i.e., the decision policy in force for that decision and the inputs it

was given). Further, accountable algorithms allow this while reducing the amount

of private data that must be reviewed by the overseer or law enforcement agency.

Finally, accountable algorithms can demonstrate that the facts disclosed to an over-

seer or during a law enforcement investigation correspond to the decisions announced

to individuals, investing the law enforcement and oversight process with additional

legitimacy.

2.2.6 Fairness

Fairness is a deep and subtle subject addressed by an enormous literature in philos-

ophy and the law, covering notions of justice, equity, social organization, the distri-

bution of goods and services in a society or organization, the norms of interpersonal

interaction, and the relationship between humans and the environment. Any review

of this vast literature would necessarily be incomplete, so we content ourselves to men-

tion only a single, relatively modern framework: the Theory of Justice by Rawls [306].

We do not rely on Rawls specifically, but the theory provides a useful framework for

discussing questions of fairness for the purpose of this section.

Rawls’ theory is often known as “Justice as Fairness” and deals with the problem

of distributive justice, or the allocation of goods in a society. Rawls draws on a variant

of the social contract, described above, defining his theory via two principles of justice:
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(i.) the liberty principle, which states that “First: each person is to have an equal right

to the most extensive basic liberty compatible with a similar liberty for others”16; and

(ii.) the di↵erence principle, which states that social and economic inequalities should

be arranged so that they are to be of the greatest benefit to the least-advantaged

members of society and that o�ces and positions must be open to everyone under

conditions of fair equality of opportunity. Rawls develops these principles through an

artificial hypothetical device he calls the original position, in which the members of a

society decide together on the principles of justice their society will use from behind

a veil of ignorance, without knowing their position in society, their class or social

status, or their distribution of assets or natural abilities. Rawls argues that, from

behind the veil of ignorance, every person should choose principles of justice that are

fair to all, specifically, principles consistent with the liberty and di↵erence principles.

Rawls notes that “[these principles] are the principles that rational and free persons

concerned to further their own interests would accept in an initial position of equality

as defining the fundamentals of the terms of their association.” Critiques of this

theory have focused on its inability to explain observed and embedded inequalities in

modern societies, its lack of accounting for personal injustices, and its use of game-

theoretic models without su�ciently justifying parameter choices, thereby weakening

the strength of its conclusions.

Automated decision making systems are superficially Rawlsian in that they are

designed and developed prior to entering the real world. However, such a parallel

analysis does little to explain systems that react to their deployment environment

through their designers and maintainers, as nearly all systems do. Also, Rawls’

original position argument is about the design of entire societies, and does not apply

16The liberty principle is superficially similar to Kant’s categorical imperative, set forth in his
Groundwork for the Metaphysics of Morals. Rawls’ synthesis of this principle with notions of equal-
ity and his elevation of moral reasons as tools that can override non-moral reasons are also Kantian.
Rawls di↵ers from Kant and his other antecedents in that he conceives of liberties as being con-
structed socially, rather than by individual choices.
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directly to the design of specific systems which might advantage or disadvantage

particular people. However, the original position provides a strong moral grounding

that such systems should be designed to minimize inequalities and general harm to

those least well o↵ in society. We return to the question of how to design systems

for e↵ective governance and the relationship between such governance and social

acceptance of such systems in the vein of the social contract in Chapter 7.

However, much has been said about the fairness or unfairness of automated de-

cision making systems specifically, particularly about the ways in which unfairness

in those systems may be hidden unintentionally, masked by a malicious actor, or

may lack a legal remedy because the structures governing current automated decision

making do not adequately cognize the possible harms. An exemplar of all of these

criticisms of automated decision systems, specific to systems that make predictions

using so-called “big data” techniques, or machine learning, comes from Barocas and

Selbst [26]. Proponents of such systems often argue that because models used to make

decisions are simply revealing objective patterns in accurate data, they must be neu-

tral. Barocas and Selbst provide several counterpoints to this reasoning. For example,

they argue that such systems can easily find discriminatory patterns by learning the

salience of variables that are highly correlated with a protected status attribute.17

Second, biases of the designer of the underlying model may come through in the form

of various choices made in building the model, such as the selection of what modeling

approach to use, what values to optimize, what training data to use, the choice of

which feature set from those data to use, or even malicious choices intended to allow

17The once-common, now-illegal practice of redlining, or evaluating the creditworthiness of a
loan applicant based on the address of the property pledged to the loan, is an example of such
a “proxy” or holographic encoding of a protected status attribute in an otherwise unprotected
feature. Redlining was overtly a method of reducing lending to racial minorities, and its im-
pact on communities and cities can be easily seen simply by reviewing the “security” maps
of the depression-era Home Owners Loan Corporation, a public-private partnership intended to
guarantee loan refinancing during the Great Depression, said to have originated the practice.
See http://www.urbanoasis.org/projects/holc-fha/digital-holc-maps/ for a sample of such
maps.
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innocuous explanations for discriminatory decisions. Barocas and Selbst consider the

legal doctrine of disparate impact, which supplies a remedy when a formally neutral

process nonetheless discriminates by having a systematically unequal impact on a

legally protected group, such as a racial minority, a particular gender, or a religious

group. They argue that disparate impact does little to ameliorate these harms as it

is currently constituted because automated decision making systems fail to meet the

appropriate tests set forth in anti-discrimination law. They use systems that screen

applicants for jobs, now commonly used for the initial review of candidates, as a run-

ning example for their legal analysis, primarily because hiring discrimination has the

most mature precedential case law.18 A similar analysis but of the impact of big data

decision making on civil rights in the financial sector comes from Robinson, Yu, and

Rieke [315].

In a similar vein, Citron and Pasquale o↵er a critique of the opacity of systems for

assigning scores to consumers, which they say violate norms of due process because

the consumers who are being scored cannot understand how the scores are deter-

mined and cannot e↵ectively audit or challenge the process by which the scores are

determined [97].19 They suggest that the appropriate remedy for these problems is

18For an overview of such systems and their trade-o↵s, see a review of the approach in
The New York Times by Claire Cain Miller, http://www.nytimes.com/2015/06/26/upshot/

can-an-algorithm-hire-better-than-a-human.html. Miller also summarized algorithmic dis-
crimination more generally in a later piece, http://www.nytimes.com/2015/07/10/upshot/

when-algorithms-discriminate.html.
19A more detailed description of various consumer-focused scoring systems can be found in

the World Privacy Forum’s report The Scoring of America: How Secret Consumer Scores
Threaten Your Privacy and Your Future by Pam Dixon and Robert Gellman. See https:

//www.worldprivacyforum.org/category/report-the-scoring-of-america/. Similar concerns
were echoed in the White House’s report on big data, Big Data: Seizing Opportunities, Preserving
Values, written by the President’s Review Group on Big Data and Privacy, led by Counselor to the
President John Podesta, available online at https://www.whitehouse.gov/sites/default/files/
docs/big_data_privacy_report_may_1_2014.pdf. In the report’s opening letter to the President,
the review group remarked “A significant finding of this report is that big data analytics have the
potential to eclipse longstanding civil rights protections in how personal information is used in hous-
ing, credit, employment, health, education, and the marketplace.” The report was accompanied
by a report by the President’s Council of Advisers on Science and Technology, Big Data and Pri-
vacy: A Technological Perspective, which was somewhat friendlier to the commercial uses of data.
See https://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_

data_and_privacy_-_may_2014.pdf.
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a regime of procedural safeguards, including regulatory oversight, transparency to

facilitate testing by regulators, robust audit trails that facilitate notice to consumers

and regulators of the system’s actual actions, and the opportunity for individuals

to engage interactively with the system to learn how it will treat specific facts and

circumstances. A similar critique is o↵ered by Crawford and Schultz [106], who argue

for a right to “procedural data due process”, a framework much like that of Citron

and Pasquale in that it demands notice to consumers and oversight entities, the right

to a hearing on the correctness of outcomes, and the right to impartial judicial review.

A philosophical framework for analyzing these discrimination problems is provided

by Friedman and Nissenbaum [153], who give a detailed taxonomy of possible biases,

framing various kinds of bias as pre-existing in society (e.g., due to the biases of

individuals involved in the design or due to biases accepted by the organizations,

institutions, and societies that field a particular computer system), technical in nature

(e.g., due to faulty random number generation or due to the use of an algorithm

designed to work well in one context being used in a di↵erent, incompatible context),

or emergent from the use of a system (i.e., due to unforeseen interactions between a

system and its environment). They provide a litany of examples of computer systems

that exhibit biases and a relation of those problems to their taxonomy. The goal of

this analysis is to provide a purely theoretical view to whether and why a system

is biased, without consideration of whether or how that bias should be redressed by

the law or society in which the system under consideration operates. Friedman and

Nissenbaum argue that the level of bias in a computer system should be a criterion

that is evaluated as part of its suitability for a particular use and one that should be

considered at the design stage.

Our approach di↵ers from this previous work: our protocol generates a robust

audit trail as called for by Citron and Pasquale and by Crawford and Schultz and

facilitates the kind of oversight that would enable a robust anti-discrimination liability
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regime as envisioned by Barocas and Selbst. By enabling e↵ective oversight, our

approach forces system designers to consider the fairness of their systems at the design

stage, so that they can justify the operation of their systems during later oversight,

as desired by Friedman and Nissenbaum. We discuss how to define or certify fairness

in a computer science context in Section 2.1.4, give our protocol itself in Chapter 5,

and explain how it answers the questions in the above-mentioned work by providing

a way to design systems to admit robust oversight in Chapter 7.

2.2.7 Accountability

Accountability is not a unified concept in philosophy or law, but rather exists in the

penumbra of many topics already discussed above such as due process, oversight, the

separation of powers, judicial review, and law enforcement. We discuss here uses

of accountability in the law, communications, sociology, journalism, and philosophy

literatures; in Section 2.1.8 we survey the uses of the term in computer science and

give our working definition of accountability for this dissertation.

Nissenbaum [287] gives a broad conceptual framework for the accountability of

computerized processes. She identifies four barriers in automated systems to robust

accountability: (i.) the problem of many hands, or issues related to many people being

involved in the production and deployment of an automated system such that no one

person can be blamed for a problem; (ii.) the problem of bugs, especially given that the

field has come to view them as routine and unavoidable; (iii.) blaming the computer,

or the use of an automated system as a scapegoat for undesirable behavior (on the

theory that the system is operating as designed and is unchangeable, so the undesired

behavior is really intended); and (iv.) the ability to own and operate software without

being liable for its errors, while at the same time intellectual property law gives many

rights to software developers without assigning them concomitant responsibilities.

Nissenbaum does not feel that these factors, even taken together, imply the automated
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systems cannot be accountable. Rather, she argues that they obscure accountability,

and that accountability can be achieved with the proper standard of care, as it has

been in other areas su↵ering similar di�culty. Nissenbaum argues for a regime of

strict liability20 and strong responsibility for software producers.

Halpern and Pearl describe a conceptual framework that relates actions by a sys-

tem to responsibility and blame [200,201] that was built on by Chockler and Halpern

to give a detailed framework for responsibility in artificial intelligence systems. While

responsibility and blame do not completely define accountability, they are important

building blocks.

Grant and Keohane [181] provide a thorough evaluation of accountability from a

political science perspective. They examine the use of accountability as a deterrent

mechanism against abuses of power in global politics, examining whether and when it

is e↵ective at the level of individuals, organizations (NGOs, multilateral bodies, cor-

porations, trans-governmental networks), or nation-states. They identify seven types

of accountability mechanism and examine when each is applicable and at what level.

Mulgan gives another detailed political science analysis of accountability, focusing on

public administration in democracies specifically, arguing that it is a poorly defined

concept without agreed-upon definitions or boundaries [269].

Citron and Pasquale investigate the accountability of information sharing practices

in so-called “fusion centers”, or partnerships between law enforcement, the intelligence

community, and private industry created to enable the rapid collection, integration,

and interpretation of intelligence data on threats to public safety [96]. They determine

that information practices often skirt the boundaries of the law when viewed in the

aggregate, but that no single agency or entity can obviously be blamed for violating

a particular rule. They argue that a new form of network accountability is necessary

to govern these practices, which takes into account the actions of the entire group

20A legal term of art, strict liability refers to a regime where the producer of a good is liable for
defects in that good even when they have taken reasonable care to avoid them.
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of participants when evaluating whether a rule has been violated and apportioning

blame.
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Chapter 3

Required Cryptographic Primitives

In this chapter, we introduce the cryptographic primitives necessary for the proto-

cols presented in later chapters. We begin in Section 3.1 by defining two abstract

primitives—signature schemes and zero-knowledge proof systems (as well as their re-

alization in a noninteractive environment)—as these tools are required for both our

protocol for accountable compelled access to data (Chapter 4) and our protocol for

general-purpose accountable algorithms (Chapter 5. We give general definitions for

the required tools and, where appropriate, the specific constructions of these primi-

tives actually used in our implementations. We consider chapter-specific primitives

in the order that the chapters are presented: Section 3.2 describes the tools required

for Chapter 4 and Section 3.3 describes the tools required for Chapter 5.

3.1 Common Primitives

We begin by defining signature schemes and the concept of zero-knowledge proof sys-

tems, both of which are needed by our two major protocols: the protocol for account-

able compelled data access presented in Chapter 4 and the more general protocol for

accountable computation presented in Chapter 5.
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We also cover extensions of zero-knowledge proofs to a non-interactive setting,

where the proof is a single message from the prover to the verifier. Interactive zero

knowledge is used in our protocol for accountable compelled data access (Chapter 4),

to ensure online the honesty of participants in certain sub-protocols. Non-interactive

zero knowledge lies at the core of our general purpose protocol for accountable algo-

rithms (Chapter 5) and forms the basis for ensuring the validity of audit records for

a variant of our compelled data access protocol which provides online auditability.

Below, in Section 3.3.2, we discuss newly developed, e�cient non-interactive zero-

knowledge systems called succinct arguments where proofs are only computationally

sound and which apply specifically to assertions about the execution of a program, a

problem known as verified computation.

3.1.1 Signature Schemes

A digital signature scheme is a cryptographic tool for authenticating a particular string

of bits. A signature scheme is a tuple of algorithms S = {KeyGen, Sign,VerifySig}
where the key generation algorithm generates a private signing key and a public

verification key, both uniformly at random from the space of possible keys, (sk, vk)
R �

KeyGen; �  Sign(sk,m, r) is a signature generated from a secret signing key sk, a

message m, and (possibly) some randomness r; and the verification algorithm accepts

or rejects the signature using the verification key, {0, 1} VerifySig(vk, �). Signature

schemes were conjectured by Di�e and Hellman in 1976 [123], but the first concrete

construction is due to Rivest, Shamir, and Adleman in 1978 [313]. We use this

construction in our work; it is summarized below. Many additional signature schemes

followed quickly [236, 262, 263, 303]. Goldwasser, Micali, and Rivest introduced a

formal model for the security of signature schemes and presented a new scheme, the

first which could be proved to meet their security requirements [176]. We turn to this

model now.
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The strongest security model for a signature scheme prevents existential forgery

of signatures under an adaptive chosen-message attack. In the chosen-message at-

tack model, the adversary A may choose messages m1, . . . ,mn and receive corre-

sponding signatures �1, . . . , �n. The model can be made adaptive by allowing the

adversary to choose message mk after learning signature �k�1. An existential forgery

is an attack where the attacker computes a valid signature �m0 on some message

m0 /2 {m1, . . . ,mn}. This is stronger than a selective forgery attack, in which the

adversary chooses m0, or a universal forgery attack, which results in the ability for

the adversary to forge signatures on arbitrary messages. Stronger still is a total break

of the signature scheme, in which the attacker learns sk.

Signatures are useful for authentication because they cannot be repudiated: the

ability to generate a valid signature is, in e↵ect, a proof of knowledge of the signing

key. If the signing key is known to belong to a particular entity and that entity

is trusted to hold the key securely, then any signed message from that entity must

be known to originate from the entity validly. This principle underlies the use of

public key infrastructure (PKI) for secure communication, in which certain trusted

entities produce certificates, or digitally signed statements binding an entity name to

a verification key. Verifying a signature using the verification key from a certificate,

then, allows an end user to trust that the message originated from the entity named

in the certificate, as long as the end user trusts the source of the signature on the

certificate. Bootstrapping trust in such systems remains an important open problem

in computer security.

RSA Signatures

The first known signature construction, due to Rivest, Shamir, and Adleman, still

sees wide use today, including in our work in Chapters 4 and 5. We summarize it

here. First, KeyGen generates distinct primes p, q and computes N = pq, along with
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integers e, d such that ed = 1( mod �(N)) where � is the Euler totient function, or the

number of integers less than its argument which are relatively prime to its argument.

Set vk = (N, e) and sk = d. To sign a message m, the signer computes � = md(

mod N). To verify a signature, a receiver checks that �e = (md)e = mde = m1 = m(

mod N), and accepts the signature if so, rejecting if not.

We observe that “plain” RSA signatures, as described above, are insecure because

they are malleable: a valid signature �1 on a message m1 and a valid signature

�2 on m2 may be multiplied to get �3 = �1�2, a valid signature on m3 = m1m2.

This problem can be solved by using a collision resistant hash function to produce

⌘ = H(m) and computing signatures � = ⌘d( mod N). This construction can be

proved adaptive-CMA secure in the random oracle model. Other constructions exist

for secure signatures without the random oracle assumption. However, we use RSA

signatures on hashed messages in our work for ease of implementation.

3.1.2 Zero-Knowledge Proofs

We follow the presentation of zero-knowledge proofs in Goldreich [168]. Informally,

a zero knowledge proof protocol is an interaction between a prover and one or more

verifiers which allows a prover to demonstrate to a verifier that the truth of some

assertion (e.g., that the prover knows the solution to a particular discrete log prob-

lem) while yielding no additional information for the verifier. Informally, receiving

a zero-knowledge proof that an assertion holds is equivalent to being told that the

assertion holds by a trusted party. Zero-knowledge proofs were introduced in 1985 by

Goldwasser, Micali, and Racko↵ [175] and have become a central feature of modern

cryptography. In particular, every language L in NP has a zero-knowledge proof

system for assertions about membership of a test string in the language. That is, for

all languages L 2 NP , there exists a zero knowledge proof system for statements of

the form x 2 L. Unlike in mathematics, where proofs are considered as fixed objects
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relating commonly agreed axioms to each other using commonly agreed derivation

rules, zero knowledge proofs are, in general, interactive protocols played between the

prover and the verifier. For this section, we discuss interactive proofs only as they re-

late to zero-knowledge proofs, however they are an interesting and important subject

in their own right and are covered in great detail by Arora and Barak [15] and by

Goldreich. In Section 3.1.2, we describe extensions that yield such protocols which

consist of only a single message from the prover to the verifier—and which hence are

noninteractive—but which still satisfy the other requirements of a zero-knowledge

proof. Section 3.3.2 describes a particular realization of non-interactive zero knowl-

edge proofs which are very e�cient to verify, and which we use heavily in Chapter 5,

namely zero-knowledge succinct arguments of knowledge, or zk-SNARKs.

In general, zero knowledge proofs are useful for partial transparency, to convince

a verifier that a secret value s is well formed, has a particular structure, or satisfies

some predicate, without revealing that value to the verifier. We use them for precisely

this purpose in Chapters 4 and 5, to demonstrate that secret values presented to

an oversight body are the same values that were used for other purposes, namely

in decrypting encrypted records (Chapter 4) or in computing some decision policy

(Chapter 5).

We can characterize NP by way of a proof system: for every language L 2 NP ,

L is defined by a polynomial-time recognizable relation RL such that

L = {x : 9y s.t. (x, y) 2 RL}

where |y|  poly(|x|). Hence, y is a “proof” of the statement x 2 L. Only correct

statements of this form will have such proofs y, by definition; further, all values x in

the language will have some proof y, by the definition of L. This gives us intuition
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for the two main properties that are fundamental to any proof system (respectively,

its verification procedure):

Soundness: The verification procedure only accepts proofs of true statements. It is impossi-

ble to provide a proof of a false statement which the verification procedure will

accept.

Completeness: For any true statement, there exists a proof y for which the verification proce-

dure will accept.

Not every collection of true statements admits a proof system with both of these

properties, as was famously proved by Gödel [166], or a proof system which can be

e�ciently executed or even decided, as was famously proved by Turing [352]. Here,

therefore, we are interested only in e�cient proof systems, namely those which admit

e�cient discovery and verification of proofs.

Given an interactive proof system (P, V ) for a language L, we say that the system

is perfect zero-knowledge if for every probabilistic polynomial-time interactive machine

V ⇤ there exists an ordinary probabilistic polynomial-time algorithm M⇤ such that for

every x 2 L the following two random variables are identically distributed:

hP, V ⇤i(x) (i.e., the transcript of the interaction between P and V ⇤ on common input x)

M⇤(x) (i.e., the output of the machine M⇤ on input x.)

We say that M⇤ is a perfect simulator for the interactive protocol hP, V ⇤i.1 It is im-

portant to observe that this is required for every interacting V ⇤, not just the honest

verifier V . If this property holds only for V , the protocol is said to be honest-verifier

1Technically, this definition is slightly too strict, in the sense that it only admits trivial protocols.
We can relax the definition by allowing M

⇤(x) to output on input x a distinguished symbol ? with
probability at most 1/2. Then we define the simulation variable as m⇤(x) to be the distribution of
M

⇤(x) conditioned on M

⇤(x) 6=?. That is, Pr[m⇤(x) = ↵] = Pr[M⇤(x) = ↵|M⇤(x) 6=?] for every
↵ 2 {0, 1}⇤.
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zero-knowledge. If we require only that the above random variables are computation-

ally indistinguishable,2 then we say that the protocol is computational zero-knowledge.

A slightly stronger relaxation is to say that the distributions of the above random

variable should be “statistically close”, that is, negligible as a function of |x|. In

that case, we say that a protocol is statistical zero-knowledge. For simplicity, we

use the term “zero-knowledge” throughout this dissertation to mean “computational

zero-knowledge”, and will specify otherwise when necessary.

The zero-knowledge property as we have defined it is a property of the prover—

it protects the prover from disclosing information to any probabilistic polynomial

time adversarial verifier interacting with it. The simulation paradigm proves that

V ⇤ does not learn any information, as the simulator M⇤ does not have access to the

interactive machine P , which has the secret information of interest, yet it can simulate

the interaction of P with V ⇤.

There exists an e�cient zero-knowledge proof system for any language in NP ,

as can be seen by constructing one for any NP-complete language. We give here

a construction of a proof system for graph 3-colorability, an arbitrarily chosen NP-

complete language. The language of 3-colorable graphs consists of all simple finite

graphs (i.e., no parallel edges or self-loops, where an edge has both ends on a single

vertex) that can be vertex-colored using three colors such that no two adjacent vertices

are assigned the same color. Formally, a graph G = (V,E) is three-colorable if there

exists a map � : V �! {1, 2, 3} such that �(u) 6= �(v) for all (u, v) 2 E.

An interactive proof that a prover knows a 3-coloring of G is as follows. The

prover and verifier receive as common input a graph G = (V,E) with V = {1, . . . n}.
The prover receives as auxiliary input a 3-coloring �.

2That is, for every probabilistic polynomial time adversaryA, the probability |Pr[A(hP, V ⇤i(x)) =
1]�Pr[A(M⇤(x)) = 1]|  ✏(k), where the probability is taken over the choice of x and the randomness
of A, M⇤, and the interactive protocol hP, V ⇤i. We denote by ✏(k) a negligible function of a security
parameter k.
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The prover selects a random permutation ⇡ over {1, 2, 3} and sets  (v) := ⇡(�(v))

for all v 2 V . The prover commits (see Section 3.3.1) to the color of each vertex

independently, computing independently (C (v), r (v)) = Commit [ (v)] for each

v 2 V and sending all commitments C (1), . . . C (n) to the verifier.

The verifier uniformly selects an edge (u, v) 2 E and sends it to the prover.

The prover opens the commitments for vertices u and v.

The verifier verifies the opening of the commitments it has received and confirms

that these colors are di↵erent. If so, the verifier accepts. If not, it rejects.

This protocol is a valid zero-knowledge proof for 3-colorability, as can be seen by

observing that the verifier will always accept if the prover knows a valid 3-coloring. If

the prover’s auxiliary input is not a valid 3-coloring of G, then some edge (u, v) 2 E

will have �(u) = �(v) and hence  (u) =  (v). Thus, the verifier has a nontrivial

probability of detecting cheating by the prover. This probability may be amplified to

the verifier’s desired level of confidence by running the protocol repeatedly (because

a cheating prover would need to cheat in all instances of the protocol, a detection

probability of p would imply an overall confidence of (1� pn) if the protocol were run

n times).

The protocol is zero-knowledge, as we can construct a simulator. Given a pro-

gram V ⇤ that interacts with the prover, we construct M⇤ to first produce a “pseduo-

coloring” of G by selecting uniformly values e1, . . . en 2 {1, 2, 3} and committing to

each of them. This sequence of commitments is computationally indistinguishable to

a sequence of commitments from a real interaction with P . If V ⇤ asks to examine

an edge (u, v) 2 E for which eu 6= ev, then M⇤ can open the corresponding com-

mitment and answer correctly. If, however, V ⇤ asks to examine an edge for which

eu = ev, M⇤ has no way to answer correctly and so aborts the simulation, outputting

the distinguished symbol ?. This happens with probability 1/3, and so M⇤ does not
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output ? with probability 2/3. This is consistent with our (relaxed) definition of

zero-knowledge.

This shows that there exist computational zero-knowledge interactive proof sys-

tems for all languages in NP . However, to accomplish this, we have had to assume

the existence of one-way functions in order to achieve the commitments necessary

in our protocol. This requirement is thought to be inherent. Below, Section 3.3.2

describes systems with a di↵erent profile of properties, which are better suited to our

needs in later chapters. Goldreich gives an excellent overview of results and theory

in this area [168].

Non-Interactive Zero Knowledge

The above-described protocol for zero-knowledge requires interaction between the

prover and the verifier. Blum, Feldman, and Micali introduced a variant of zero-

knowledge proofs in which the interaction between the prover and the verifier consists

of a single message from the prover to the verifier, and so no actual interaction is

necessary [56]. Specifically, Blum et al. showed that a common reference string

shared between the prover and verifier is su�cient to achieve zero-knowledge without

interaction. Such a string could be generated during a special setup phase, and in some

applications has special structure or must be known to have been sampled uniformly

from some space. Subsequently, Goldreich and Oren showed that even one-shot zero-

knowledge proofs are impossible in the standard model [171], meaning that some

additional assumption is necessary to achieve them. Fiat and Shamir showed that

the common random string can be generated heuristically from what would be the

verifier’s view of an interactive protocol, though the use of random oracles [148]. Later

authors generalized and improved the concept substantially [55,142,143,187,329]. We

consider non-interactive zero-knowledge further in Section 3.3.2.

87



3.2 Primitives Required for Accountable Warrant

Execution

We review here the particular primitives necessary for the protocol for accountable

compelled access to data described in Chapter 4. These are: (i.) identity-based

encryption (Section 3.2.1), (ii.) Oblivious Transfer (Section 3.2.2), (iii.) secret sharing

schemes (Section 3.2.3), and (iv.) threshold cryptography (Section 3.2.4).

3.2.1 Identity-Based Encryption

Identity-based cryptography defines public-key cryptosystems (encryption and signa-

ture schemes) where the public keys are arbitrarily chosen strings called identities,

intended to be non-repudiable names or addresses of the participants.3 In identity-

based cryptography, all users must trust a central key generation authority, which

holds long-term secrets used to derive an identity-specific secret key for each user.

The key authority need not be online once identity keys have been generated and

does not participate directly in protocols using identity-based primitives. The goal of

designing systems in this way is to eliminate the need for any sort of key distribution

mechanism such as public key infrastructure (PKI) [209], a “web of trust” consisting

of signed key endorsements shared among participants [157, 377], or the trust of a

third-party key distribution service [35, 341] with which each communicating party

must maintain a shared long-term secret.

Shamir introduced the concept of identity-based cryptosystems over 30 years ago,

in 1984 [332]. However, Shamir was only able to construct identity-based signatures.

Constructing identity-based encryption (IBE) remained an open problem until 2001,

3In this way, identity-based cryptography shares some goals with the design of accountable sys-
tems, as it is intended as a tool for attributing cryptographic operations. Shamir said in his original
paper on the topic that keys could be “[a]ny combination of name, social security number, street
address, o�ce number, or telephone number [. . . ] provided that it uniquely identifies the user in a
way he cannot later deny, and that is readily available to the other party.”
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when two constructions were discovered: one by Boneh and Franklin [63, 64] using

pairings, or bilinear maps between groups, and one by Cocks [100] based on quadratic

residues. Later IBE schemes focused on the pairing-based approach [59,60,324,361],

as it is more practical. A pairing is an e�ciently computable (non-trivial) bilinear

mapping e : G⇥ Ĝ! GT where G, Ĝ,GT are finite cyclic groups of some prime order

q. We let g be a generator of G and ĝ be a generator of Ĝ. A method for publicly

verifiable parameter generation for typical instantiations of pairing-based systems was

developed by Chen, Cheng, and Smart [89].

Briefly, an IBE system consists of four algorithms:

SetupIBE generates a master public key mpk and corresponding master secret key

msk;

ExtractIBE uses the master secret key msk and an identity id to generate a corre-

sponding secret key skid;

EncIBE encrypts a message m using id, yielding ctid; and

DecIBE decrypts a ciphertext ctid using skid.

IBE Security requires that an adversary who learns the secret keys for multiple

identities cannot break the security of the scheme for some other identity id for which

the adversary does not have skid. The IBE we are interested in, that of Boneh and

Boyen and described in Section 3.2.1, satisfies a slightly weaker Selective IBE security

property, in which the adversary must commit to attacking a particular id before

learning any identity keys, rather than making this choice adaptively; BB-IBE-like

schemes can be made adaptive-ID secure [361], but selective security su�ces in our

work.
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Boneh-Boyen IBE

The protocol of Chapter 4 makes use specifically of the Boneh-Boyen IBE (BB-IBE)

scheme [59,60]. We describe the operation of this scheme briefly:

SetupIBE chooses a random generator g 2 G, a random ↵ 2 Zq, and random elements

h, g2 2 G. Letting g1 := g↵ and v := e(g1, g2), the algorithm outputs:

mpk := (g, g1, h, v) and msk := g↵2

ExtractIBE(msk, id) chooses a random r 2 Zq and outputs:

skid := (d0, d1) =
⇣
msk · �gid1 h

�r
, gr
⌘

EncIBE(mpk, id,m) encrypts m 2 Ĝ by choosing a random s 2 Zq and producing:

ct :=
⇣ �

vs ·m, gs, (gid1 h)
s
� ⌘

DecIBE(skid, ct) considers ct as the tuple (A,B,C) and outputs:

A · e(C, d1)
e(B, d0)

= e(g1, g2)
s ·m · e(gid1 h, g)

rs

e(g, g2)s↵ · e(g, gid1 h)rs
= e(g1, g2)

s ·m · 1

e(g, g2)s↵
= m

where in the last equality, we have used the fact that g1 := g↵.

The exact operation of DecIBE(skid, ct) is not relevant to our discussion in Chapter 4—

it is included for completeness only. Selective IBE security follows from a standard

assumption on pairing friendly elliptic curves. BB-IBE encryption does not use pair-

ings and is comparable in speed to a standard elliptic-curve public-key encryption.

As far as we are aware, the protocol introduced in Chapter 4 is the first to benefit

substantially from this feature. By contrast, other IBEs, such as those of Boneh
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and Franklin [63] or Sakai and Kasahara [324] require a pairing computation during

encryption.

3.2.2 Oblivious Transfer

Oblivious transfer has an extensive history in the literature [78,139,182,183,211,213,

279, 304]. At a high level, oblivious transfer is an interactive protocol between two

parties, a sender, S, and a receiver, R where:

• The sender has a set of messages S = {m1, . . . ,ms}.

• The receiver takes as input an index ` 2 {1, . . . , s}.

After the protocol, R receives message m` and nothing else, while S learns nothing.

Modern oblivious transfer protocols allow the receiver to adaptively query for multiple

messages.

The first oblivious transfer protocol is due to Rabin [304]. This protocol proceeds

as follows:

Protocol (Rabin’s Oblivious Transfer).

(i.) S picks a value N = pq, where p and q are large primes, and a value e relatively

prime to N . S encrypts a message m as c ⌘ me mod N and sends N, e, c to

R.

(ii.) R chooses at random x mod N and sends a to S, where a ⌘ x2 mod N .

(iii.) S computes y such that y2 ⌘ a mod N and returns y to R.

If y 2 {x,�x}, R has learned nothing. If, however, y /2 {x,�x}, R will have

learned enough to e�ciently factor N and recover m from the known values e and

c ⌘ me mod N . Because S cannot learn x from a as it is Rabin-encrypted [303], S
does not know whether y allowed R to recover m or not. In this way, S is oblivious as
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to whether the message was sent. Rabin’s approach was later generalized to a method

for all or nothing disclosure of s secrets by Brassard, Crépeau, and Robert [71].

A later protocol of Even, Goldreich, and Lempel [139], attributed by the authors

also to Micali, defines a 1-out-of-2 oblivious transfer where S has S = {m0,m1} and

R wishes to receive mb for b 2 {0, 1} while holding S oblivious to the value of b. This

was later generalized to 1-of-s oblivious transfer [279] and to transfer of arbitrary

subsets from a permissible collection [211].

These two definitions (that of Even, Goldreich, and Lempel in terms of indexing

into a set and that of Rabin in terms of all-or-nothing disclosure) were shown to be

equivalent by Crépeau [107].

Blind IBE and Adaptive Oblivious Transfer

Green and Hohenberger [182] define an extension to IBE called blind IBE, in which

the protocol ExtractIBE used by message recipients to receive identity keys skid for their

identity id from the IBE key authority is replaced by a new protocol BlindExtractIBE

in which message recipients receive skid but the key authority learns nothing about

the id for which it produces skid. This can be thought of as an oblivious transfer of

skid from the key authority acting as S to a user acting as R, where the messages skid

are indexed by identities id in a set of possible identities I.
Indeed, Green and Hohenberger show that blind IBE yields an e�cient adaptive

oblivious transfer where messages S = {m1, . . . ,ms}, drawn from a universe of possi-

ble messages S ✓M, are IBE encrypted such that mi is encrypted under the identity

i. The receiver, wishing to receive message m�, where � 2 {1, . . . , s}, blindly extracts

skid for id = � and then decrypts m� as desired.

This simple protocol can be extended to an adaptive oblivious transfer that is fully

simulation secure, meaning that security for both the sender and the receiver can be

proved by showing that neither party can determine whether they are participating
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in the real protocol or in an ideal-world protocol where the other party is assumed

trusted.4 Green and Hohenberger further extended this to a protocol that is univer-

sally composable [183], meaning that it is secure even when composed arbitrarily with

other protocols or executed concurrently [79].

We describe here the concrete blind IBE Green and Hohenberger derive for BB-

IBE, as we will need it in Chapter 4. The protocol is between the IBE key authority

P and a user U .

Protocol (Blind BB-IBE Extraction).

U :

(i.) Choose y
R � Zq.

(ii.) Compute h0 = gygid1 and send h0 to P .

(iii.) Execute PoK{(y, id) : h0 = gygid1 } with P .5

P :

(iv.) Abort if the proof fails to verify.

(v.) Choose r
R � Zq.

(vi.) Compute d00 = msk · (h0h)r.

(vii.) Compute d01 = gr.

(viii.) Send (d00, d
0
1) to U .

U :

(ix.) Check that e(g1, g2) · e(d01, h0h) = e(d00, g).

4Many oblivious transfer protocols were introduced in a “half simulation” model, meaning that
only the security of the sender was proved using a real/ideal simulation game and only a weaker
notion of security can be proved for the receiver [125,277,278,280,288]. However, Naor and Pinkas
showed that this model admits practical “selective failure” attacks on the receiver’s privacy—the
sender can introduce protocol failures that depend on the receiver’s choice of message [278].

5This can be done easily using the techniques of Schnorr [329].
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(x.) If the check passes, choose z
R � Zq; otherwise, abort and output ?.

(xi.) Compute d0 = (d00/(d
0
1)

y) · (gid1 h)z and d1 = d01 · gz.

(xii.) Output skid = (d0, d1).

Green and Hohenberger prove that this protocol is secure in the sense that:

(i.) It is leak-free, meaning that a malicious user cannot learn anything by executing

BlindExtractIBE with an honest authority that she could not learn by executing

ExtractIBE with an honest authority. Further, the user must actually know the

id for which she is extracting a key.

(ii.) It is selective failure blind, meaning that a malicious authority cannot learn

about the identity for which a user has requested the extraction of a secret key,

nor can the authority cause the BlindExtractIBE protocol to fail in a manner that

depends on the user’s choice of identity.

3.2.3 Secret Sharing

Secret sharing (also called secret splitting) refers to any of several approaches to

distributing a secret value among a group of participants, each of whom holds a share

of the secret. The secret can only be reconstructed if a su�cient number of shares are

combined. The shares may be distributed by a trusted dealer, or the secret may be

jointly constructed by the players’ choice of individual shares [32].6 The concept of

secret sharing was independently introduced in 1979 by Shamir [331] and Blakley [51].

Formally, let s be a secret, drawn from some universe of possible secrets s 2 S.
The goal is to create a set H of shares of s, H = {s1 . . . sN} such that: (i.) Knowledge

6This latter approach is useful if the secret to be shared may be chosen at random, as crypto-
graphic keys generally are. Much work has described distributed protocols to generate secrets shared
in this way which nonetheless have some algebraic structure required for certain cryptographic ap-
plications. These protocols, called “distributed key generation” (DKG) protocols in the literature,
often have the added advantage that, so long as one participant plays honestly, the secret deter-
mined by the protocol is randomly sampled in the sense that it is drawn uniformly from the space
of possible secrets and is unpredictable to all parties [40, 82,89,163].
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of a subset T ✓ H where |T | � t implies knowledge of s; and (ii.) Knowledge of a

subset T ✓ H where |T | < t imparts no additional knowledge of s (i.e., an adversary

who learns T has an unchanged prior distribution over the values in S for the value

of s).7 Such a scheme is referred to as a (t, N)-secret sharing scheme and the set H

is referred to as a sharing of s. If t = N , all participants are required to reconstruct

the secret. Typically, the secret may be reconstructed by any subset of � t of the

N participants, but this varies based on the particulars of the scheme in use. The

cases of t = 1 and t = N are trivial to construct schemes for—when t = 1, the secret

may be given to all participants; when t = N , all parties except one may be given

random bit strings equal in length to the secret and the last party is given the bitwise

XOR of these strings with the secret. The cases 1 < t < N are interesting, however,

as are subset-oriented access control rules, which can be simulated by giving certain

participants multiple shares (as an easy example, if the president of a company should

always be able to access the secret, he or she can be given t shares in a scheme with

t+N total shares).

Shamir and Blakley both proposed making the secret a kind of linear reconstruc-

tion of algebraic information—Shamir proposed encoding the secret as the constant

term of a degree t� 1 polynomial and giving each player a point on the graph of that

polynomial, while Blakley proposed encoding the secret as a coordinate at the inter-

section of t (t � 1)-dimensional hyperplanes. Other early schemes due to Mignotte

and Asmuth and Bloom used the Chinese Remainder Theorem [17,266]. Later, Chor

et al. introduced the concept of verifiable secret sharing [92], in which participants

can check that their shares are consistent (i.e., are shares of the same secret), which

protects them from a misbehaving dealer and from malicious protocol participants

7Technically, this definition only admits secret sharing schemes which are information-
theoretically secure (because an adversary with < t shares has no additional information on the
secret). Information-theoretically secure schemes require each participant to hold an amount of
information equal to |s|, and therefore have a total storage cost of N |s|. To improve on this, some
secret sharing schemes in the literature are only computationally secure, but we do not describe
them here.

95



trying to learn information beyond their own shares. Pedersen introduced a pub-

licly verifiable scheme, which allows anyone to verify the consistency and validity

of shares [296]. Secret sharing is an important primitive for many secure multiparty

computation protocols; a survey of secret sharing schemes and their uses can be found

in Beimel [32].

Shamir Secret Sharing

We describe the secret sharing scheme of Shamir [331] in more detail, as it is necessary

to construct threshold BB-IBE, described in Section 3.2.4.

To construct a (t, N)-secret sharing, Shamir observes that a polynomial f(x) of

degree k�1 is fully determined by any k points that lie on its graph while any value of

f is consistent with knowledge of only k�1 points; hence, anyone who knows at least

k points can interpolate and discover the full polynomial while anyone knowing only

k�1 points will have no information about the polynomial f . Therefore, assuming the

secret s is an element of some finite field F, we construct a degree-(t� 1) polynomial

over F by choosing at random a1, . . . , at�1, setting a0 = s, and letting:

f(x) := a0 + a1x+ . . . at�1x
t�1

Now we can construct a sharing of s for all N participants simply by evaluating

si := f(i).

3.2.4 Threshold Cryptography

In general, if a secret key operation in a cryptosystem is performed by a group of

N participants working in concert, and that operation requires at least a threshold t

of the participants to participate in order to be successful, that cryptosystem is said

to be a (t, N)-threshold cryptosystem. Practically, threshold cryptosystems may be
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constructed whenever secret key operations in a certain system commute (or can be

made to commute by altering the protocol) with a secret sharing scheme. Threshold

cryptography was introduced by Desmedt [119] and built on by Boyd [67], Croft and

Harris [108], and Desmedt and Frankel [120]. Threshold algorithms exist for many im-

portant public-key cryptosystems, including RSA [335], ElGamal [120], Paillier [151],

and the digital signature algorithm [167].

Blind Threshold BB-IBE

We use a threshold blind identity key extraction protocol for BB-IBE in Chapter 4.

This protocol allows for a configurable threshold t of N total decryption authorities to

participate in extracting identity keys by using Shamir’s secret sharing on the master

secret key msk. Specifically, during the setup phase, each player is dealt mski = g↵i
2

where each (↵1, . . . ,↵n) is a linear sharing of the original ↵ in msk = g↵2 .
8

During BlindExtractIBE, we follow the protocol described in Section 3.2.2, al-

though now the protocol is executed between a user U and some active subset

W ✓ {P1, . . . ,PN} of the N distributed key authorities. Thus, in step (ii.), the user

sends h0 to the set of active parties W . Once U has amassed � t blinded key shares

skid,i = (d0,i, d1,i), she can combine them by choosing z
R � Zq and computing:

skid =
⇣Y

i2W

d�i0,i
d1,i

(gid1 h)
z,
Y

i2W

(d1,i)
�igz

⌘

Where the �i are the secret sharing coe�cients, that is, ↵ =
P

i2{P1,...,PN} �i↵i, where

the values of the �i are determined by interpolating to recover the secret, as in the

Shamir scheme.9

8These keys (and their sharing) can be generated by a trusted dealer or constructed using the
distributed, multi-party key generation protocols of Gennaro et al. [163].

9Technically, any linear secret sharing scheme would work, but we use Shamir secret sharing in
our implementation of the protocol in Chapter 4.
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3.3 Primitives Required for General-Purpose Ac-

countable Algorithms

We begin by considering the tools necessary for our general-purpose protocol for

building accountable algorithms. There are four basic tools:

(i.) cryptographic commitments (Section 3.3.1), (ii.) zero knowledge and non-in-

teractive zero-knowledge proofs with a special focus on zk-SNARKs (Section 3.1.2),

(iii.) pseudorandomness (Section 3.3.3), and (iv.) techniques for obtaining fair random

bits (Section 3.3.4).

3.3.1 Cryptographic Commitments

Cryptographic commitments are a basic ingredient in many protocols and were in-

troduced in 1979 by Shamir, Rivest, and Adleman [333] and separately by Blum

in 1981 [54], and Even, Goldreich, and Lempel in 1985 [139]. Later authors for-

malized the notion more carefully and introduced the alternative terminology of bit

commitment schemes, used interchangeably with the plain term “commitment”, but

sometimes reserved for the special case where the value being committed to is a single

bit [70,276]. At a high level, a commitment scheme is a two-phase two-party protocol

in which one party, called the sender S, publishes a value Cx during the first phase

(the commit phase) which binds it to a particular value x. During the second phase

(the reveal phase), the commitment is opened to reveal x to the receiver R such that

the following requirements are satisfied.

Hiding: At the end of the first phase, R, having learned Cx, learns nothing about x.

Binding: Given the transcript of the first phase, there exists only a single value that the

receiver can accept in the second phase as a valid opening of the commitment.

This requirement must hold even if S tries to cheat.
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More formally, a commitment scheme is a pair of randomized algorithms

Commit [x] ! (Cx, rx) and VerifyCommitment [x, Cx, rx] ! {0, 1} with the following

properties:

Commit [x]! (Cx, rx): The commitment algorithm takes a value x and yields a tuple

(Cx, rx) of a commitment and a commitment key. The commitment must pre-

serve secrecy in the sense of the hiding property above, namely that Cx may be

safely published without leaking any information about x.10 The commitment

key rx is a random value drawn from {0, 1}k, where k is a security parameter

for the commitment scheme.

VerifyCommitment [x, Cx, rx]! {0, 1}: The commitment verification algorithm takes

the revealed previously committed value x, the commitment Cx, and the com-

mitment randomness rx and returns a single bit, 1 if Commit [x] could have

yielded (Cx, rx) for some choice of its internal random coins and 0 otherwise.

The probability that a computationally bounded adversary can determine values

(x, x0, Cx, rx) such that (x, rx) 6= (x0, r0x) and VerifyCommitment [x, Cx, rx] = 1

but also VerifyCommitment [x0, Cx, r0x] is a negligible function of k.

Random Oracle Commitments

Commitment schemes can be realized using any one-to-one one-way function and its

hard-core predicate [168]. We realize commitments in the random oracle model using

a cryptographic hash function H : {0, 1}⇤ �! {0, 1}k. Given a security parameter ,

to commit to a value x, we select uniformly r
R � {0, 1} and let Cx = H(xkr).

(Cx, r) Commit [x]

10Formally, for all x0 and x1, and given a bit b

R � {0, 1}, a computationally bounded adversary
who sees only x0, x1, and C

xb has negligible advantage in guessing the value of b.
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The specific hash function we use, which must be e�ciently realizable in a quadratic

arithmetic program for computation inside a zk-SNARK (see Section 3.3.2), is de-

scribed below.

An Arithmetic Hash Function

Ajtai demonstrated that certain problems related to finding short vectors in lattices

are hard on average if, as is commonly believed, they are hard to approximate in

the worst case [9]. Goldreich, Goldwasser and Halevi (GGH) showed that this result

implies a straightforward families of hash function on m-bit strings that are both

universal and collision-free. Because these constructions involve only simple arith-

metic operations, they lead to compact and e�cient representations in the language

of rank-1 constraint systems, described below in Section 3.3.2, which admit e�cient

zero-knowledge succinct arguments, or zk-SNARKs.

The GGH hash function (on m-bit input and n log q-bit output, hGGH : {0, 1}m !
Zn

q ) is constructed as follows: let q be a prime such that n log q < m < q
2n4 . Then

pick a random n⇥m matrix M with entries in Zq. Given M 2 Zn⇥m
q , we can define

a function hM : {0, 1}m �! Zn
q , defined for input s = s1s2 · · · sm 2 {0, 1}m, as

hM(s) = Ms( mod q) =
X

i

siMi( mod q)

where Mi is the ith column of M .

hM maps m bits to n log q bits, but the parameters are chosen so that m > n log q.

This implies that there are collisions in the output of hM . Goldreich, Goldwasser,

and Halevi showed that it is infeasible to find any of these collisions unless certain

well-known lattice problems have good, e�ciently discoverable approximate solutions

in the worst case, which would contradict the result of Ajtai mentioned above.
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3.3.2 Verified Computation

We covered verified computation and its goals at a high level in Chapter 2, Sec-

tion 2.1.3. Here, we discuss specific protocols as they relate to our work in later

chapters. Specifically, we examine the history and operation of zero-knowledge suc-

cinct argument systems (zk-SNARKs).

Before defining a concrete zk-SNARK protocol, however, we define verified compu-

tation more formally. A zero-knowledge verifiable computation scheme VC for a func-

tion F consists of three polynomial-time algorithms, VC = {KeyGen,Compute,Verify}
defined as follows [291, Def. 1].

(EKF ,VKF ) KeyGen(F, 1�): The randomized algorithm KeyGen takes the function

F to be executed and a security parameter �; it outputs a public evaluation key

EKF and a public verification key VKF .

(z, ⇡z) Compute(EKF , x, y): The deterministic worker algorithm uses the public

evaluation key EKF the input x, and the auxiliary input y. It outputs z  
F (x, y) and a proof ⇡z of z’s correctness.

{0, 1} Verify(VKF , x, ⇡z): Given the verification key VKF and the input x, the

deterministic verification algorithm outputs 1 if F (x, y) = z and 0 otherwise.

Such a protocol might satisfy several desirable properties, which we summarize here.

The interested reader should consult full formal definitions in the supporting litera-

ture [93, 161,162,291,292]:

Correctness For any function F and input (x, y) to F , if we run (EKF ,VKF )  
KeyGen(F, 1�) and (z, ⇡z)  Compute(EKF , x, y), we always get 1  
Verify(VKF , x, ⇡z).
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Security For any function F and any probabilistic polynomial-time adversary A,

Pr[((x0, y0), z0, ⇡0z0) A(EKF ,VKF ) : F (x, y) 6= z and 1 Verify(VKF , x0, z0, ⇡0
ẑ

0
i
] 

negl(�).

E�ciency KeyGen is assumed to be a one-time operation whose cost is amortized over

many calculations; we require that Verifyis cheaper than simply executing F .

Zero-Knowledge After receiving ⇡z, no probabilistic polynomial-time verifier has learned any

additional knowledge about the prover’s auxiliary input y.

Computationally Sound Arguments

Zero-knowledge succinct arguments of knowledge (zk-SNARKs) realize practically the

goals of zero-knowledge proof systems and verified computation systems, both de-

scribed above, but as computationally sound arguments. This relaxes the soundness

requirement of zero knowledge proofs, such that instead of being impossible for the

verifier to accept a proof of a false statement, it is merely computationally infeasible.

In exchange, it is known that perfect zero-knowledge argument systems exist for all

languages in NP (recall that we were only able to show the existence of computa-

tional zero knowledge systems when we required perfect soundness, see Section 3.1.2.

However, we cannot merely modify the usual definition of a zero-knowledge proof

system such that we only require computational soundness, since the definition treats

the prover as being computationally unbounded. Hence, we have to relax the com-

pleteness condition as well.

Definition 3 (Computationally Sound Arguments (Goldreich, Def. 4.8.1 [168])). A

pair of interactive machines (P, V ) is called an argument system (computationally

sound proof system) for a language L if both machines are polynomial-time (with

auxiliary inputs) and the following two conditions hold:
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Completeness For every x 2 L, there exists a string y such that for every string z,

Pr[hP (y), V (z)i(x) = 1] � 2

3

Computational Soundness For every polynomial-time interactive machine B, and for all su�ciently long

x /2 L and every y and z,

Pr[hB(y), V (x)i(x) = 1]  1

3

As before, the confidence such a protocol provides the verifier can be improved

by running the protocol many times, although parallel runs may not provide any

increased confidence in certain cases.

Zero Knowledge Succinct Arguments (zk-SNARKs)

Surprisingly, argument systems can be built for any language in NP in a way that

is succinct, meaning that argument messages are very small and can be verified very

e�ciently. Many authors have described various zk-SNARK constructions [39,42,50,

72, 162, 186, 187, 249, 250, 291]. We give here an overview of the construction used in

our work, which has been particularly well-studied and has been carefully developed

and optimized [39, 42, 162, 291]. We follow the compact presentation of this protocol

in Ben-Sasson et al. [42].

Public Parameters: A prime r, two cyclic groups G1 and G2 of order r with gen-

erators P1 and P2, respectively, and a bilinear map e : G1 ⇥G2 �! GT (where

GT is also of order r).

Key Generation (pk, vk) KeyGen(C): On the input of a circuit C : Fn
r ⇥ Fh

r �!
Fl
r, the key generator G computes ( ~A, ~B, ~C,Z) = QAPinst(C) where QAPinst

is a function converting circuits into quadratic arithmetic programs. QAPinst is
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an involved process, and we do not describe it in full here. Instead, we direct

the interested reader to Gennaro et al. [162] and remark that quadratic arith-

metic programs are constraint programs over the language of rank-1 constraint

systems (R1CS), where the constraints take the form:

h ~A, (1, ~Xi · h ~B, (1, ~X)i = h ~C, (1, ~X)i

Here, ~A, ~B, ~C are vectors over a field Fr, which coincides with the groups G1 and

G2, and ~X is a vector of formal variables for the constraint system. We remark

that there is a companion function, S  QAPwit(C), which produces a function

S : Fn
r ⇥ Fh

r �! F`r which takes inputs (~x, ~y) to C and produces a satisfying

assignment to the QAP. We also remark that the process of producing these

constraint representations constitutes the bulk of programmer e↵ort and the

bulk of computational ine�ciency in using zk-SNARKs in practice (the R1CS

representation, being easily relatable to a circuit representation, is much larger

and more unwieldy than representations of the computation in more traditional

languages).

The key generator extends the QAP by adding constraints

Am+1 = Bm+2 = Cm+3 = Z,

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0.
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G then samples uniformly ⌧, ⇢A, ⇢B,↵A,↵B,↵C , �, � 2 Fr and sets pk :=

(C, pkA, pk
0
A, pkB, pk

0
B, pkC , pk

0
C , pkK , pkH) where for i = 0, 1, . . . ,m+ 3:

pkA,i := Ai(⌧)⇢AP1, pk0A := Ai(⌧)↵A⇢AP1

pkA,i := Ai(⌧)⇢AP1, pk0A := Ai(⌧)↵A⇢AP1

pkA,i := Ai(⌧)⇢AP1, pk0A := Ai(⌧)↵A⇢AP1

pkA,i := Ai(⌧)⇢AP1, pk0A := Ai(⌧)↵A⇢AP1

The key generator also computes vk := (vkA, vkB, vkC , vk�, vk
1
�� , vk

2
�� , vkZ , vkIC

where

vkA := ↵AP2, vkB := ↵BP1, vkC := ↵CP2

vk� := �P2, vk1�� := ��P1, vk2�� := ��P2

vkZ := Z(⌧)⇢A⇢BP2, (vkIC,i)i=0
:= ↵CP2

and outputs (pk, vk)

Prover (~z, ⇡) Compute(pk, C, ~x, ~y): On input ~x and proving key pk, the prover

computes ( ~A, ~B, ~C,Z) = QAPinst(C) as well as a satisfying assignment for the

QAP, ~s := QAPwit(C, ~x, ~y) 2 Fm
r .

The prover then samples uniformly �1, �2, �3 2 Fr. Using these, the prover

computes ~h = (h0, h1, . . . , hd) 2 Fd+1
r , coe�cients of the polynomial

H(z) :=
A(z)B(z)� C(z)

Z(z)

where we define A,B,C 2 Fr[z] as follows:

A(z) := A0(z) +
Pm

i=1 siAi(z) + �1Z(z)

B(z) := B0(z) +
Pm

i=1 siBi(z) + �2Z(z)

C(z) := C0(z) +
Pm

i=1 siCi(z) + �3Z(z)
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The prover then defines:

˜pkA := “same as pkA but with pkA,i = 0 for i = 0, 1, . . . , n

˜pk0A := “same as pk0A but with pk0A,i = 0 for i = 0, 1, . . . , n

Letting ~c = (1 � s � �1 � �2 � �3) 2 F4+m
r , the prover computes:

⇡A := h~c, ˜pkAi, ⇡0A := h~c, ˜pk0Ai, ⇡B := h~c, pkBi, ⇡0B := h~c, pk0Bi
⇡C := h~c, pkCi, ⇡0C := h~c, pk0Ci, ⇡K := h~c, pkKi, ⇡H := h~h, pkHi

and outputs ⇡ = (⇡A, ⇡0A, ⇡B, ⇡
0
B, ⇡C , ⇡

0
C , ⇡K , ⇡H). Observe that this proof con-

stitutes only eight field elements.

Verifier {0, 1} Verify(⇡, vk, ~x): The verifier takes the proof ⇡, the verification key

vk, and a public input ~x as its inputs. First, it computes a specialization of the

verification key for the input, as follows.

vk~x := vkIC,0 +
nX

i=1

xivkIC,i

Observe that vk~x 2 G1.

Next, the verifier checks the validity of the knowledge commitments for A,B,C:

e(⇡A, vkA) = e(⇡0A,P2), e(⇡B, vkB) = e(⇡0B,P2), e(⇡C , vkC) = e(⇡0C ,P2)

The verifier also checks that the same coe�cients were used:

e(⇡K , vk�) = e(vk~x + ⇡A + ⇡C , vk
2
��) · e(vk1�� , ⇡B).
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Finally the verifier checks the QAP divisibility condition:

e(vk~x + ⇡A, ⇡B) = e(⇡H , vkZ) · e(⇡C ,P2x).

The verifier accepts (i.e., outputs 1) if and only if all of these checks pass.

Otherwise, it rejects (i.e., outputs 0).

The above protocol relies on (for polynomial q(|C|)): (i.) the q-power Di�e-Hell-

man assumption; (ii.) the q-power knowledge-of-exponent assumption; and (iii.) the

q-strong Di�e-Hellman assumption citeBB04, gennaro2004multi, groth2010short. It

is worth observing that the foregoing protocol is succinct in the sense that proofs

are very short and verification of those proofs is very fast—implementations of the

above protocol, which we use in Chapter 6, can achieve 288-byte proofs at 128 bits of

security (or 230-byte proofs at 80 bits of security), with verifications requiring only

approximately 5ms on modern hardware. Observe as well that the work of the ver-

ifier does not depend on |C|, and therefore that verification e↵ort does not depend

on the complexity of the input computation. KeyGen and Compute, however, are

heavyweight steps that do depend on |C|
It is also worth observing that the foregoing protocol requires the KeyGen algo-

rithm to be executed by a trusted party—a party who knows the random coins used

by this algorithm can straightforwardly forge proofs that pass verification but do not

represent possession of the underlying knowledge. That is, such a party can break the

soundness of the proof system. Therefore, it is important that the KeyGen process be

trustworthy. It can either be executed by a trusted party, which need not be present

after the KeyGen step is complete and the keys published, or it can be computed in

a distributed fashion using the distributed, multiparty techniques of Ben-Sasson et

al. [40]. We remark that the distributed key generation approach significantly im-

proves the deployability of these tools, especially for accountability systems, which

107



must engender trust in their correct operation by demonstrating that parties that

misbehave will be detectable.

3.3.3 Pseudorandomness

Pseudorandomness aims to generate long sequences of bits, using a deterministic

process and short sequences of randomly selected bits, which are computationally

indistinguishable from long sequences of truly random bits. Specifically, we define

below pseudorandom generators (PRGs) which achieve this goal. Our main protocol,

presented in Chapter 5, uses a PRG to expand a small, verifiable random seed into

a long string from which any random coins needed by some computation can be

drawn. This allows random choices, which need to di↵er over many executions of

a program, to be replaced by short, recordable strings that can be generated in

a trustworthy way. We also describe the related idea of pseudorandom functions

(PRFs), which are e�ciently representable, e�ciently computable functions which are

computationally indistinguishable from functions selected at random from the space

of functions with the same domain and range. We further describe the construction

of verifiable random functions (VRFs), which produce a third-party verifiable proof

of their correct execution. We use a VRF in our protocol in Chapter 5, instantiating

it with an e�cient VRF due to Dodis and Yampolskiy [127] in our implementation.

We describe the construction of this concrete VRF as well. We end the section by

summarizing the literature on verifiable fair sampling, which we depend on for our

work in later chapters but do not explicitly use in our protocols.

Computational Indistinguishability

Before beginning our discussion of primitives for pseudorandomness, however, it is

useful to define formally the notion of computational indistinguishability, which cap-

tures the idea that no e�ciently computable process can distinguish between two

108



distributions. Once we establish that two distributions, such as one that samples

uniformly at random and one that samples pseudorandomly, are computationally in-

distinguishable, we can consider objects which sample from one distribution as equiv-

alent to objects that sample from the other. Indeed, if we had a process in which

we could not replace one an object that samples randomly by an object that samples

pseudorandomly, this process would yield an e�cient distinguisher for the pseudoran-

domness of the replacement distribution, contradicting our initial assumption. This

is the basis for much of modern cryptography. We follow Goldreich [168, Ch. 3] in

giving definitions for abstract primitives and computational indistinguishability.

We begin by defining the notion of a probability ensemble [168, Defn. 3.2.1].

Definition 4. Probability Ensemble Let I be a countable index set. An ensemble

indexed by I is a set of random variables indexed by I, X = {Xi} where i 2 I.

We require this notion to define computational indistinguishability [168, Defn.

3.2.2,#1]. Specifically, we use I = N below, although it is also possible to define

probability ensembles indexed by (e.g.) binary strings of up to a specific length.

These definitions can be unified by associating natural numbers with their unary

representations (i.e., associating N and {1n}n2N.

Definition 5. Polynomial-Time Indistinguishability Two ensembles X = {Xi}i2N
and Y = {Yj}j2N are indistinguishable in polynomial time if for every proba-

bilistic polynomial time algorithm D, every positive polynomial p, and all su�ciently

large n, we have

PrD(Xn) = 1� PrD(Yn) = 1 <
1

p(n)

The probabilities in the above definition are taken over the random variablesXi, Yi

and the internal coin tosses of the algorithm D. We remark that this definition is

related to but coarser than the concept of statistical closeness. In particular, given a

domain for a random variable, there exists a distribution which is statistically far from
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the uniform distribution over that domain, but which is nonetheless indistinguishable

from it.

Pseudorandom Generators (PRGs)

Our definitions tell us that we can replace randomly sampled probability ensembles

by pseudorandom ensembles with at most a negligible cost to the performance of

an e�cient application that reads the ensemble. However, such replacement is only

useful if we can sample pseudorandom ensembles more e�ciently than we can sample

truly at random. This gain is achieved by pseudorandom generators, which we define

in this section, again following Goldreich [168, Defn. 3.3.1].

Definition 6. Pseudorandom Generator (PRG) A pseudorandom generator

(PRG) is a deterministic polynomial time algorithm G satisfying:

(i.) Expansion: There exists a function l : N �! N such that l(n) > n for all n 2 N

and |G(s)| = l(|s|) for all s 2 {0, 1}⇤.

(ii.) Pseudorandomness: The ensemble G = {G(Un)}n2N is pseudorandom. That is,

there exists a uniform ensemble U = {Un}n2N such that G and U are indistin-

guishable.

The function l is called the expansion factor of G.

Pseudorandom generators exist under the widely held assumption that one-way

functions exist. The input to a pseudorandom generator is usually referred to as a

seed.

We realize PRGs in our work in Chapter 6 using cryptographic sponge func-

tions [190], specifically the function Keccak [44], now the SHA-3 standard. Sponge

functions work by absorbing input in blocks to build an internal state. Once the sate

is constructed, the sponge can be squeezed to emit blocks of pseudorandom bits. As
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they are somewhat intricate, we refer the interested reader to the presentations of

Keccak and sponge functions generally in the reference and standards documents.

Pseudorandom Functions (PRFs)

Pseudorandom functions (PRFs) are e�ciently computable functions that are indis-

tinguishable from an ensemble of functions that selects uniformly from the set of

functions with the same domain and range. In this way, a pseudorandom function

cannot be e�ciently distinguished by an adversary from a randomly sampled func-

tion. This makes the functionality of a PRF similar to that of a PRG, and in fact it

is straightforward to construct one from the other.11 However, PRFs give us a way to

generate poly(n) pseudorandom values assigned to n-bit strings, and retrieve those

bits dynamically, while storing only n bits over the life of an application. We use a

variant of PRFs described below, verifiable random functions, to achieve exactly this:

in Chapter 5 we wish to generate a pseudorandom value for each subject of an auto-

mated decision process based on the characteristics of that subject, the process, and

a truly random value supplied from a trusted process. This gives us a reproducible

source of cryptographic-quality per-subject seeds for use in a PRG.

We use a definition of pseudorandom function families due to Lynn:12

Definition 7. Pseudorandom Function Family A function f : {0, 1}n ⇥ {0, 1}k �!
{0, 1}m is a pseudorandom function family, parametrized over its first input, if

given a key K 2 {0, 1}k and an input X 2 {0, 1}n, there is an e�cient algorithm

to compute fk(x) = f(x, k) and for any probabilistic polynomial time oracle machine

A(·), we have:

|PrK {0,1}k [A
fK = 1]� Prf2F [A

f = 1]|  ✏

11Goldwasser, Goldreich, and Micali [170] show how to e�ciently construct PRFs from a PRG.
The opposite construction is trivial: just evaluate a PRF at successive points (F

k

(1), F
k

(2), . . .) to
obtain the desired amount of output.

12In addition to his excellent description of the details of implementing pairing-based cryp-
tography [256], Lynn maintains an extensive set of notes on general topics in cryptography at
https://crypto.stanford.edu/pbc/notes/
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where F = {f : {0, 1}n �! {0, 1}m}.

PRFs can be used to construct simple symmetric encryption schemes and secure

message authentication codes, however we do not need them for this—only to con-

struct verifiable random functions, described below.

We remark that even an average-case random function is very ine�cient, requir-

ing nearly all of its input-output relation to be specified explicitly in its shortest

representation. The construction of e�ciently computable pseudorandom functions,

even under the assumption of one-way functions, is one of the major achievements of

modern cryptography and computer science generally.

Verifiable Random Functions (VRFs)

We can extend the notion of a PRF to define verifiable random functions (VRFs).

Intuitively, VRFs behave like PRFs, but also output a proof of their outputs’ correct-

ness. More formally, we follow the definition given by Dodis and Yampolskiy [127, Def.

1]:

Definition 8. Verifiable Random Function Family A family of functions F(·)(·) :

{0, 1}n �! {0, 1}n is a family of VRFs if there exists a probabilistic polynomial

time algorithms Gen and deterministic algorithms Prove and Verify such that Gen(1)

outputs a pair of keys (sk, vk); Provesk(x) computes (Fsk(x), ⇡sk(x)), where Fsk(x) is

a pseudorandom function and ⇡sk(x) is a proof of correctness in the sense that if

(y, ⇡) = Prove(sk, x), then Verifyvk(x, y, ⇡) = 1. Also, no values (vk, x, y1, y2, ⇡1, ⇡2)

may satisfy Verifyvk(x, y1, ⇡1) = Verifyvk(x, y2, ⇡2).

Under this definition, the proof in a VRF serves to convince the verifier that the

announced output of the VRF corresponds to the specified input and not some other

input.
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Dodis and Yampolskiy construct a VRF13 under the q-Di�e-Hellman Inversion

assumption, which states that it is hard, given (g, gx, gx
2
, . . . , gx

q
) as input, to compute

g1/x. Their construction works as follows, given public parameters p a prime and

g 2 Zp.

(sk, vk) Gen(1k): The key generation process chooses a secret s
Z �⇤p and sets sk =

s, vk = gs.

(y, ⇡sk(x) Provesk(x): The function is evaluated by setting the output y = g1/x+sk.

The proof in this particular construction is embedded in the output value, so

no separate proof is necessary.

{0, 1} Verify(x, y, ⇡): The verifier checks that e(gx · pk, y) = e(g, g) and outputs 1

if so and 0 otherwise. Indeed, if the function was computed correctly:

e(gx · pk, y) = e(gxgs, g1/(x+s)) = e(g, g)

This scheme is proposed as a signature scheme by Boneh and Boyen [59]. Dodis

and Yampolskiy prove that it is verifiable and satisfies a technical “unpredictability”

criterion, making it a verifiable unpredictable function (VUF). This is su�cient for

our pseudorandomness and verification needs in the protocol in Chapter 5.

3.3.4 Fair Randomness

In order to take advantage of the tools for pseudorandomness introduced in Sec-

tion 3.3.3, it is still necessary to sample a small number of bits truly at random or at

least in a way that is beyond the control and predictive power of parties to a protocol.

13Technically, the construction we describe here is only a verifiable unpredictable function, not a
verifiable random function. However, with some care in its application, it su�ces for the purposes
for which we require it in Chapters 5 and 6. Specifically, we must be careful not to interpret all of
the output of the VUF as pseudorandom, but must discard some of it using standard techniques,
which we describe in Chapter 6.
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In this section, we consider the large existing literature on techniques for generating

verifiable fair randomness, which achieve this goal. We observe that there are a few

key approaches to this problem which exist in the literature: public ceremonies, such

as lotteries, to draw lots and assign scarce resources have been used since ancient

times; one can simply trust an entropy authority to produce valid randomness—when

such an authority publishes its randomness widely, it is often referred to as a random

beacon; finally, modern cryptography has produced a wealth of multiparty protocols,

including the distributed key generation protocols mentioned in Section 3.2.3, which

generate strings outside of the control of their participants and which have the im-

portant property that, so long as at least one participant behaves honestly, the entire

protocol execution remains trustworthy.

Public Randomness Ceremonies

Lotteries have a rich and ancient history: the use of lotteries to raise funds for state

projects (e.g., many authors describe the use of a keno-like game by the Han Dynasty

to raise funds for its Great Wall project) and to assign scarce resources; Price surveys

knowledge of these and other early Asian uses of games of chance in the context of

a social analysis of gaming and gambling in traditional Asian cultures more gener-

ally [302]. They were also used in early Celtic cultures, mentioned by Homer in the

Iliad, and run as an amusement during dinner parties in Ancient Rome. Later, lot-

teries in medieval times were used to raise money for public works projects including

fortifications. In early modern times and into modern times, lotteries of various sorts

were employed by most large European states and now exist worldwide. Ezell gives

a more extensive history [140].

Lotteries as public ceremonies for generating a random outcome can be as pre-

dictable as placing a set of tickets or tokens representing outcomes in a bin or hat, or

depend on more complicated mechanisms such as throwing wooden pegs onto a board.
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Modern instantiations often use a machine that tumbles small plastic balls numbered

to encode outcomes and which selects one or more balls without replacement to de-

termine the lottery outcome. However, even the use of mechanized tumbling has

failed to produce results indistinguishable from random in several notable cases. One

such case was the failure of the lottery for the United States Selective Service System

in 1969 [318, 340], which produced measurably biased output such that participants

with birthdays in November and December were more likely to receive low numbers

representing early induction into military service. Another case is the failure of the

fiscal year 2012 Diversity Visa Lottery operated by the U.S. State Department, which

we consider in more detail in Chapter 6.

Beyond lotteries, public ceremonies are used to generate and share cryptographic

keys in a verifiable manner, as analyzed in detail by Ellison [134]. Considered more

abstractly, ceremonies for the fair exchange of high-value objects such as treaty sig-

natures have an ancient history as well.

Random Beacons and Trusted Authorities

The concept of relying on a broadcast source of randomness to protect the integrity

of protocols requiring a random input is due to Rabin [305], who gives one of the

earliest protocols using this technique.

An alternative approach is suggested by Corrigan-Gibbs et al. [103], who suggest

that trusted authorities can supply entropy for mixing in key generation and then can

receive a zero-knowledge proof that this entropy was incorporated into key generation.

In this way, the authority can later certify that generated keys were drawn from a

large space.

Backes et al. present CSAR, a system for cryptographically strong accountable

randomness authorities [21]. CSAR introduces authorities who provide randomness

along with a protocol to hold those authorities accountable for a set of security in-
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variants designed to make interaction with the authority indistinguishable from in-

teraction with a trusted beacon.

Multiparty Fair Randomness: Coin flipping over the phone

The largest suite of technical tools for building verifiable fair randomness comes in

the form of multi-party protocols for mixing purported randomness from many par-

ticipants. The properties of pseudorandom functions and pseudorandom generators

make it easy to take a variety of randomness sources and “mix” them to create

pseudorandom values which are not predictable to any participant and which remain

pseudorandom as long as at least one participant submits an actual random value.

The earliest such protocol is Blum’s famous technique for “coin flipping over the

phone” [54]. In the protocol, each player commits to a random string and passes the

other player a commitment to that string. The players then open their commitments

and combine the randomness (for example, if the committed value is a single bit, the

bits of the two players can simply be added in Z2. Longer strings can be combined

bit-wise.

More complicated versions of the above basic technique can admit many players

and yield the generation of structured random objects, as in the distributed key

generation protocols described in Section 3.2.3. We remark in particular on a protocol

for securely sampling the large, circuit-specific keys needed in the trusted setup phase

of deploying a zk-SNARK system, due to Ben-Sasson et al. [40], which makes our zk-

SNARK realization of the protocol presented in Chapter 5 much more realistic and

deployable.
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Chapter 4

Accountable Warrant Execution

In this chapter, we consider how to achieve accountability for an example application

with a well-defined policy that can be expressed completely in advance: the problem

of restricting compelled access to data by law enforcement. This protocol is joint

work with David Wu, Joe Zimmerman, Valeria Nikolaenko, Dan Boneh, and Edward

W. Felten and has been released online in a preliminary form [232]. Because in this

application it is clear that law enforcement should only access data under a valid

order, we can design a system where this property is maintained as an invariant. One

such design is the focus of this chapter; it is meant as an exemplar of a wide literature

of such “correct by construction” systems (see Chapter 2, Section 2.1 for a high-level

overview of these approaches).

4.1 Problem and Setting

Law enforcement increasingly demands access to data held by the providers of online

communications services,1 sometimes demanding access to a wide swath of commu-

1See, for example, the graphic depicting the relative volume of data production between several
popular services in “Thanks, Snowden! Now all the major tech companies reveal how often they
give data to government.” Kashmir Hill, Forbes. http://www.forbes.com/sites/kashmirhill/

2013/11/14/silicon-valley-data-handover-infographic/

117

http://www.forbes.com/sites/kashmirhill/2013/11/14/silicon-valley-data-handover-infographic/
http://www.forbes.com/sites/kashmirhill/2013/11/14/silicon-valley-data-handover-infographic/


nications metadata such as the details of when and between whom communications

take place.2 In many cases, such compelled access requires a legal grant of authority

such as a warrant.3 However, despite e↵orts by service providers to be transparent

about the requests they receive and respond to,4 there is still no way for outsiders to

verify that law enforcement can justify the origin of any data it collects. In particular,

even the overseers of such investigation activities cannot verify that the information

produced responsive to some legal authority or order actually matches the scope of

that authority, which has led to abuses of access in the past.5

2For example, The U.S. National Security Agency (N.S.A.) was disclosed in 2013 to be
collecting all “call detail record information” from a major phone carrier on “an ongoing
daily basis”. See Greenwald, Glen “NSA collecting phone records of millions of Verizon cus-
tomers”, The Guardian, 6 June 2013. http://www.theguardian.com/world/2013/jun/06/

nsa-phone-records-verizon-court-order
3There are many sources of authority under which law enforcement may compel access to data,

of which a warrant is only one kind. For example, many kinds of data are available under a panoply
of administrative subpoenas depending on the jurisdiction and the type of data requested. For an
overview, see Jonathan Mayer’s course on Surveillance Law, https://www.coursera.org/course/
surveillance or the works of Kerr [226–228].

4cf. the “transparency reports” of several popular online service providers:

(i.) Google: https://google.com/transparencyreport;

(ii.) Twitter: https://transparency.twitter.com/;

(iii.) Yahoo!: https://transparency.yahoo.com/;

(iv.) Facebook: govtrequests.facebook.com;

(v.) Microsoft: https://www.microsoft.com/about/corporatecitizenship/

en-us/reporting/transparency and https://www.microsoft.com/about/

corporatecitizenship/en-us/reporting/fisa;

(vi.) Apple: https://www.apple.com/privacy/transparency-reports/ and https://www.

apple.com/privacy/government-information-requests/;

(vii.) Dropbox: https://www.dropbox.com/transparency/

(viii.) CloudFlare: https://www.cloudflare.com/transparency

5In particular, see disclosures of formal reprimanding of the U.S. National Security Agency by
its overseer for purposes of data access, the Foreign Intelligence Surveillance Court,

(i.) Charlie Savage and Scott Shane, “Secret Court Rebuked N.S.A. on Surveillance”,
The New York Times, 21 August 2013. http://www.nytimes.com/2013/08/22/us/

2011-ruling-found-an-nsa-program-unconstitutional.html

(ii.) Scott Shane, “Court Upbraided N.S.A. on Its Use of Call-Log Data”, The
New York Times, 10 September 2013. http://www.nytimes.com/2013/09/11/us/

court-upbraided-nsa-on-its-use-of-call-log-data.html
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Further, such compelled access is indistinguishable technically from an insider

attack, in which a malicious insider gathers the same records and provides them to

an adversary either under duress or in response to a bribe. Systems which admit

access for insiders to respond to legal orders are naturally susceptible to these sorts

of attacks, and securing against insider abuses while maintaining flexibility in access

control policy choices remains an important open problem. Because observers cannot

tell the di↵erence between compelled access and an insider attack, the accountability

of such systems su↵ers.

In this chapter, we propose to address these concerns with accountable warrant

execution, a cryptographic assurance that, subject to certain assumptions about trust,

if an investigator requests permission from a court to compel the production of records

from a data source that pertain to a specified identifier, and the court approves that

request with a valid order, then the records seen by the investigator in response to

its request actually correspond to the scope of the granted order. In particular, the

records in our protocol are held encrypted, and the power to enable the investigator

to decrypt and review them rests with a set of independently trusted decryption

authorities. Every decryption by the decryption authorities in response to a valid

order by the court results in an audit record—a committed, encrypted version of the

order—which is reviewed by a designated auditor.

Our protocol provides strong guarantees of accountability, in the sense that an

after-the-fact review of the audit records can always be used both to justify any plain-

text records in the possession of the investigator and to e↵ectively blame a specific

misbehaving party if the protocol is ever violated. Our goal in ensuring accountability

is to facilitate the existing social, political, and legal processes designed to constrain

and oversee the execution of legal orders by the investigator.

Accountability in this sense is about ensuring that the behaviors of the parties

to the protocol are well explained and well justified so that an oversight process can
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detect misbehavior and parties to the protocol will pay a cost for deviating from the

rules. Hence, the parties will wish to follow the protocol faithfully. It is separately

necessary for the protocol to ensure other important correctness properties, such as

the information flow restriction that the investigator only see records which have

been decrypted in response to a valid order. Clearly, if a data source wants to share

plaintext directly with the investigator, we cannot detect or stop this—no protocol

can prevent the sharing of information outside that protocol’s formal scope.

Under appropriate assumptions about trust in the parties, described in our secu-

rity model in Section 4.2, the protocol satisfies several critical properties:

• The protocol grants the investigator access to exactly the records authorized by

the court via an order.

• Every decryption generates an audit record.

• Every decrypted record held by the investigator can be correlated to an audit

record by the auditor.

• An unprivileged viewer of the audit record learns that all access was correct in

the sense that it was authorized by the court, without learning precisely which

records were accessed or under what justification. That is, the existence and

scope (in the sense of the number of record identifiers) of any compelled access

is publicly verifiable, even if accesses to specific records is only verifiable by the

court or auditor. The number of orders is also revealed, such that (subject to

assumptions about the granularity of orders) the public can know how many

records the investigator is reviewing.

• A privileged viewer of the audit record (i.e., a designated oversight entity such as

a court or legislature) can learn additional information: precisely which records

were accessed and the justification for that access. Such an overseer also learns
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whether the audit record is valid, or consistent with the requests made by the

investigator.

Our protocol provides the tools necessary to solve this problem while enabling ef-

fective oversight: the investigator can request access to specific, particularized, iden-

tified records from a court authorized to determine the validity of that access; the

fact of these requests is always logged for future audit; and a disinterested third party

can learn that the investigator’s actions are properly logged for review and oversight,

without learning the specific operational details of each request. Indeed, in our pro-

tocol, the details of the investigator’s requests are only learned by the investigator

itself and the court, while the data sources and decryption authorities learn only the

existence of valid orders for which access was granted.

Our protocol realizes a new cryptographic notion, which we call auditable obliv-

ious transfer (aOT), which is of independent interest. Our aOT derives from the

adaptive oblivious transfer of Green and Hohenberger [183], introduced in Chapter 3,

Section 3.2.2. aOT allows a sender with messagesm1, . . . ,mk to transmit to a receiver

with an index 1  `  k the message m` such that the sender learns no information

about ` except an auditing record which is a commitment to ` and an encryption

under the key of a designated auditor of the randomness used to generate this com-

mitment. We extend the notion of aOT to auditable threshold oblivious transfer, in

a setting with multiple senders, as we describe in Section 4.3.

4.1.1 Applications

Although we use terms like “investigator”, “court”, and “order” to describe our pro-

tocol, we observe that the protocol has many practical applications. We summarize

a few here.
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Law enforcement or intelligence agency access to communications meta-

data or business records An intelligence analyst (the investigator) requests access

to business records (e.g., phone call metadata) held by a carrier (the data source) for a

targeted person (named in the identifier) from a special intelligence court (the court).

The court will determine whether that access is justified under the law according to

the relevant standard, such as Reasonable Articulable Suspicion, and allow access if

so, sending this justification to an oversight body (the auditor).

Cloud provider access to customer data An employee at a cloud provider (the

data source) requests access to customer data for a specific account (the identifier)

from the company’s general counsel (the court). In this example, oblivious decryption

is likely unnecessary: if some trustworthy portion of the cloud provider’s organization

(such as an internal oversight board) is acting as a decryption authority, it might be

possible or even desirable for that entity to learn which account was decrypted.

Authorized Access to Sensitive Audit Records Many situations exist where

audit records are generated as a matter of course, but are only intended to be re-

viewed in exceptional circumstances. We imagine a system (the data source) which

generates privacy-sensitive audit records (e.g., surveillance videos) indexed by some

identifier (e.g., time, the camera location) and those records are only reviewed when

some authority figure (the court, e.g., a manager) certifies that a set of exceptional

criteria have been met (the order, e.g., the cameras have recorded a potential crime).

Again, oblivious decryption may not be a requirement in this scenario—a techni-

cian instructed to review audit records might know or have a reasonable guess as to

which records correspond to exceptional circumstances (e.g., the location of a video

surveillance camera which recorded a crime and the approximate time of the relevant

footage).
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4.1.2 Our Results

This chapter introduces a protocol for accountable compelled access to data, which

achieves a strong notion of accountability that reflects our high-level goal of facili-

tating oversight by people of a technical process and also a strong formal notion of

accountability for cryptographic protocols. Further, we implement this protocol and

show that it is practical for realistic application scenarios, such as the oversight of law

enforcement or intelligence use of telephony metadata records for a large country. In

particular, we show that it is possible to encrypt half a billion records using our imple-

mentation in just under three hours using approximately one standard rack of modest

hardware. Our protocol is practical both for normal operation (i.e., encryption) and

supports the execution of court orders (i.e., decryption) in only a few seconds, even

with a large number of decryption authorities.

Structure of the Chapter In Section 4.2, we describe our security model and

the specific properties achieved by our protocol. We also describe a simple protocol

which does not fully meet our requirements. Using the cryptographic primitives

introduced in Chapter 3, Section 3.2, Section 4.3 introduces a new notion that provides

a useful formalization of what our protocol achieves: auditable oblivious transfer.

Section 4.4 describes our full protocol. Section 4.5 describes our implementation of

the protocol, which we benchmark in Section 4.6. We summarize related work specific

to this chapter in Section 4.7 and conclude in Section 4.8 by discussing some possible

extensions to our protocol as well as practical di�culties in selecting trustworthy

decryption authorities for law enforcement applications.

123



4.2 Security Model

We give a brief overview of the model for our analysis: the parties to our protocol, our

trust assumptions, the security properties we desire, and a discussion of the meaning

and usefulness of accountability specific to the approach described in this chapter.

4.2.1 Setting

Our protocol applies in the context of an investigator serving legal orders for com-

pelled access to specific labeled data records, xi,j,t. We assume that records are

indexed by a per-record tag, in our case a triple (i, j, t). A record’s tag contains: an

index i identifying the data source where it originated; an index j identifying the user

to which it pertains; and a value t which represents the time interval in which the

record was created or collected (this scheme allows flexibility in clustering records by

time interval—t could be a date or any other time period, giving orders the granular-

ity of “all records produced in period t”; but t could also simply be a sequence number

which is di↵erent for each new record). Our general approach will be to encrypt each

record under a key specific to its tag and then to let access to these keys be a proxy

for access to the underlying plaintext records, controlling and auditing that access as

necessary to meet our security goals.

Parties Our protocol has five types of parties (see Figure 4.2), which we model

as computationally bounded communicating processes in the standard cryptographic

model:

Si: Data Sources such as telecommunications carriers or cloud service providers,

who generate, collect, and label records xi,j,t. The role of each data source in our

protocol is to encrypt each record it collects under a key specific to the tag of that

record.
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I: the Investigator seeks legally authorized compelled access to the records pro-

duced by the Si.

C: the Court is the designated authority with the power to approve or deny the

investigator’s requests and the arbiter of access to the data records.

Dk: the Decryption Authorities hold secret key material that allows the de-

cryption of authorized records. Our protocol requires t of N decryption authorities

to participate in the threshold decryption of a record. Each authority participates

only when presented with a valid order for decryption. Decryption authorities may

or may not be authorized to know which specific tag (i, j, t) is being decrypted; we

assume unless otherwise stated that each Dk must be blind to (i, j, t). Decryption

authorities should be independently trusted, such that the compromise of secret key

material from one does not a↵ect the integrity of the others.

A: the Auditor maintains a log of the protocol execution and certifies the pres-

ence of entries in this log to other parties, who do not allow the protocol to make

progress without such certification. In particular, the auditor retains audit records

generated as the protocol progresses. We describe the auditor as a party to the proto-

col as this more closely matches our desired setting, where audit records are reviewed

by a privileged oversight body, but it would be su�cient for the auditor’s online role

to be implemented as an append-only log visible to all other parties.

Trust assumptions We assume the parties described above represent independent

bases of trust and will not be mutually compromised or collude. Further, we assume

that all parties will follow the protocol honestly if they believe misbehavior will be

detected. We also assume that the parties can gather in a trusted environment to

generate and exchange keys (e.g., for signature schemes and channel authentication)

or can rely on a trusted authority or PKI to generate and exchange such keys on

their behalf. Finally, we must make the (admittedly strong) assumption that all
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interactions between the parties are as defined by the protocol (that is, we assume

that the parties do not take actions “o↵ the books”).

The strength of these assumptions is tempered by the value of accountability, de-

scribed in Section 4.2.2. For example, the fact that the investigator must be able to

justify to an oversight body the origin of any records in its possession and the assump-

tion that the investigator does not wish to be caught misbehaving imply together that

the investigator will always request access to records using the protocol.

Communication Model In this chapter, we assume that all parties communi-

cate over confidential and mutually authenticated channels. Such channels can be

e�ciently realized using, e.g., TLS [122].

4.2.2 Security Goals

We briefly describe the security invariants a protocol in our setting must provide,

which are all achieved by the construction presented in Section 4.4.

Record Secrecy At a basic level, we require that the data records be kept secret

from all parties and from any third party who observes either the protocol itself or

the audit log generated by the protocol. The only exceptions to this rule are that the

records may be seen by the data source Si which originates them (that is Si can access

records with tags (i, j, t) for all j and t) and the Investigator I can access precisely the

set of records for which it has requested and received access via the court C under a

valid, recorded order.

Accountability At an intuitive level, we wish to guarantee the invariant that the

investigator gets access to all and only the records authorized by the court. We also

require that the investigator be able to justify any records it holds by identifying

a corresponding audit record demonstrating that it was obtained through proper
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channels. Finally, we require that if the record secrecy invariant is violated or that if

some party fails to fulfill its duties under the protocol, that the protocol transcript up

to the point of violation provides enough information to an unprivileged third-party

observer that the observer can blame a specific party for misbehavior.6

These intuitive notions of accountability are similar to the formal definition intro-

duced by Küsters, Truderung, and Vogt [235] in that inspection of the transcript of

our protocol (or, in our case, a subset, namely the logged audit record) will allow any

observer to blame a specific misbehaving party in the event any party misbehaves.

We define accountability for the purpose of this dissertation in a di↵erent, more

high-level way: namely that the social, political, and legal processes designed to con-

strain and oversee the execution of court orders can operate e↵ectively. This is similar

to the Küsters et al. notion of goal-based accountability, but requires the additional

invariants described above, namely that the investigator be able to justify any record

to which it has access by exhibiting an order authorizing access to that record. Both

notions of accountability are stronger than the commonly considered properties of au-

ditability or verifiability. Chapter 2, Section 2.1.8 describes this distinction further.

Value of Accountability By defining accountability as a property not just of our

protocol, but our protocol in the context of human-level processes, we create a robust

link between the formal guarantees provided by the protocol and the question of

why the parties are deterred from violating the protocol detectably. Indeed, since we

cannot prevent the parties from sharing extra plaintext outside the protocol, we must

rely on the parties’ incentives to avoid detectably violating the rules and hence on

the parties’ accountability to subsequent oversight.

6While these notions do not capture certain types of misbehavior such as parallel construction
(in which the investigator learns the contents of a specific record before requesting it and subse-
quently requests that record in order to satisfy the accountability requirements), such misbehavior
is inherently beyond the scope of the sort of access control possible with any protocol of the type
we introduce.
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While we do not take a position on the correctness of any policy that allows

compelled access to private data by law enforcement, we emphasize that there are

risks inherent to the collection of private data by data sources. Our protocol aims

to minimize the additional risks of abuse or mishap due to the need to comply with

compelled access orders in the case where data are already being collected by the

data source. This chapter, and indeed this dissertation, does not argue in favor of

mandatory collection or retention of data, nor do we express any opinion on when

law enforcement or intelligence agencies should be able to demand access to data. In

particular, we believe our protocol is better suited to deployment scenarios in which

data are already collected or are collected as part of the natural function of another

process, such as in the telephony metadata example described in Section 4.1.

Robustness to partial compromise Our protocol must continue to provide

strong accountability and record secrecy guarantees in the event that one or more

parties is compromised. Specifically, the protocol must resist compromise or collusion

of any subset of the court, the auditor, and any subset of the decryption authorities

insu�cient to decrypt records.

We guarantee these properties in an o✏ine sense: misbehavior can always be

detected, but might only be detected after the fact. In Section 4.4, we discuss how

to construct an extension of our protocol which achieves online accountability (i.e.,

if any party misbehaves, the other parties will notice immediately and can abort

the protocol). Regardless, misbehavior should be visible to a non-participant in the

protocol who reviews the audit record.

While our model allows some level of compromise or collusion, we stress that

because the goal of our protocol is accountability, such issues must be eventually

detectable, but perhaps only by review of the behaviors of specific parties by their

respective oversight bodies.
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Audit independence Our protocol must satisfy a strong notion of third-party

auditability. That is, any non-participating third party who observes the audit record

produced by the protocol should, subject to the trust assumptions outlined above,

be able to determine that the record secrecy and accountability properties described

above hold. Further, a privileged third party who has oversight authority should be

able to learn precisely which records were requested, which requests were authorized,

and which record keys were produced.

4.2.3 A simple, insu�cient approach

In this section, we describe a temptingly simple approach to our problem. However,

it achieves only some of the above properties. This protocol is depicted in Figure 4.1.

Protocol 1 ((Insu�cient)).

Setup. The court and the auditor each generate a public/private key pair ((pk⇤, sk⇤)

and (pkA, skA), respectively) for a public-key encryption system, with the au-

ditor’s secret key skA known as the escrow key. The auditor also generates a

signing/verification key pair. We assume the public and verification keys are known

to all parties, but that the secret and signing keys are held only by the generating

party.

Normal Operation. Each data source Si encrypts its data records xi,j,t under a fresh

key pair (pki,j,t, ski,j,t) for a labeled public-key encryption scheme [336], using the

record’s tag as the label, and sends (or makes available) the resulting ciphertext cti,j,t

to the investigator along with an encryption ctpki,j,t of the record key under the court’s

master key pk⇤.

Investigator Query. When the investigator wishes to decrypt a particular record ci-

phertext cti,j,t, it sends a request consisting of the requested record tag (i, j, t), and

the associated record key ciphertext ctpki,j,t to the court asking it to decrypt that
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ciphertext. The court either approves or denies this request. In either case, the court

encrypts the request as well as its decision under pkA and sends it to the auditor,

which replies with an acknowledgment that includes a signature �L on the court’s log

message. If the court has denied the investigator’s request, the protocol ends here.

If, however, the court has approved the investigator’s request, the court verifies

that the signature �L corresponds to the court’s audit message and hence to the

investigator’s original request for the record key for tag (i, j, t). If the signature

verifies, the court will use its master secret key sk⇤ to determine pki,j,t by decrypting

the provided record key ciphertext using the provided tag as the label.

Protocol 1 is very simple: the court plays both the role of the Court and the role

of a Decryption Authority as described in Section 4.2.1. Because of this, the protocol

is not robust to compromise of or misbehavior by the court, either of which will allow

arbitrary decryption of records without any sort of enforcement that the relevant audit

record will be produced, violating the record secrecy and accountability requirements

stated in Section 4.2.2. We can improve the security posture of the court in various

ways, such as by equipping it with a hardware security module initialized with the

secret key sk⇤ to minimize the risk of exfiltration. However, such enhancements do not

fundamentally alter the fact that this protocol fails to meet our robustness against

partial compromise requirement and in fact fails to give accountability in the case of

a misbehaving or compromised court.

This protocol also does not provide the audit independence property described in

Section 4.2.2. This property could be achieved by extending the protocol so that the

court also submits to the auditor a separate non-interactive zero knowledge proof that

the key it decrypted, pki,j,t and the tag in the court’s audit message (i, j, t) match

the tag in the investigator’s request. To make such a proof e�cient, it is necessary to

chose the public-key encryption scheme in the protocol such that it admits an e�cient

proof of this knowledge.
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Additionally, Protocol 1 is not very e�cient, requiring the data source or the

investigator to store one record key for each encrypted record. The record tag must

also be stored with each ciphertext in the clear, which may render the privacy benefits

of encrypting the record itself useless.

The careful reader will notice that the use of record-specific keys in Protocol 1

is not strictly necessary, since the data sources could just encrypt the records them-

selves under pk⇤. We present the protocol as above for two reasons: first, the use of

record-specific keys hews closer to our high-level model of allowing per-record keys to

represent capabilities for access to a particular record. Second, using this hierarchical

key architecture prevents the court itself from viewing the records, allowing us to

satisfy a more stringent record secrecy policy than in the simplest case.7

Below, in Section 4.2.4, we describe a more robust protocol, which is described

formally in Section 4.4. Naturally, this robustness comes with some complexity; the

primitives necessary to build it were presented in Chapter 3. Our new primitive,

auditable oblivious transfer, is presented below in Section 4.3.

4.2.4 A complete approach

The straw man protocol in Section 4.2.3 was insu�cient because: (i.) The court is a

trusted single point of failure and this fails our robustness requirement; (ii.) the pro-

tocol cannot be audited by an untrusted observer, which fails our audit independence

requirement; and (iii.) the number of keys in the protocol is unwieldy, which fails a

basic e�ciency test.

Our complete protocol addresses ((i.)) by separating the function of a decryption

authority, which holds the secret key material that allows record decryption, from that

of the court, which approves decryption requests. This separation of duties allows

each decryption authority to confirm with the auditor that an audit record pertaining

7Secrecy from the court could also be achieved without per-record keys by double-encrypting the
records, once under pk⇤,C and once under another public key pk⇤,I specific to the investigator.
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Figure 4.1: An insu�cient approach which trusts the Court never to misbehave,
shown with the court fortified by a hardware security module.

to the request in question has been recorded. Using a combination of secret sharing

and threshold cryptography, we can instantiate our protocol so as to limit the trusted

base to the requirement that t of N authorities are honest.

We address ((ii.)) by designing a new notion (auditable oblivious transfer, de-

scribed in Section 4.3.1) and a protocol realizing it (our main protocol, described in

Section 4.4) that guarantees that interactions between the court and the new author-

ities are subsequently auditable by a third party.

Finally, we address ((iii.)) by a straightforward application of identity-based en-

cryption (IBE), which is public-key encryption but where the public keys are arbi-

trary strings, in our case the record tag (i, j, t) [332]. IBE allows us to compress the

many per-record keys of Protocol 1 onto a single master key pair and then extract

record-specific keys using the identity of a record later, should access to a record

become necessary, greatly improving the deployability of a cryptographic solution to

this problem. We use the IBE of Boneh and Boyen (BB-IBE) [60] with privacy for

the investigator’s requests provided by the blind key extraction protocol of Green
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and Hohenberger [182] (introduced in Chapter 3, Section 3.2.2) modified to enable

accountability as described in Section 4.3.1.

We outline our complete protocol, developed in more detail in Section 4.4 and

shown in Figure 4.2, here. Chapter 3, Section 3.2 describes the various necessary

primitives.

Full Protocol Description (Informal)

Setup. All parties generate key pairs for channel authentication and exchange public

keys. Generate a master key pair (mpk,msk) as well as public parameters for

BB-IBE. Split the IBE secret key into shares, mskk, giving one to each decryp-

tion authority Dk. Further, the court and each decryption authority generate

keys for a signature scheme.

Normal Operation. At the end of each time interval t, each data source Si will encrypt any records

about subject j generated during that interval under the master IBE public key,

mpk, using each record’s tag (i, j, t) as the required identity. This yields one

ciphertext per source-user pair per time interval. These ciphertexts are sent (or

made available) to the investigator I.

Investigator Query. When the investigator wishes to access the record for a particular tag id =

(i, j, t), it presents this request to the court. The court records the fact and

contents of the request with the Auditor. If the court grants the request, it

issues an order approving decryption to each decryption authority and to the

auditor. The decryption authorities confirm with the auditor that the order has

been recorded, and then engage in accountable blind IBE extraction with the

court. From blind extraction, each decryption authority receives an audit record

containing a commitment to the id requested as well as an encryption under the

Auditor’s secret key of the randomness needed to open that commitment; the
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Figure 4.2: A high-level view of our protocol, showing the parties and their interac-
tion.

court receives shares skidk of skid. Each decryption authority records their audit

record with the auditor. Finally, the court combines the received key shares to

yield skid, which it then returns to the investigator, which decrypts the desired

record.

4.3 Protocol-Specific Primitives

In this section, we describe primitives specific to our protocol for compelled data ac-

cess, specifically focusing on the development of our new notion of auditable threshold

oblivious transfer (aOT), which describes the functionality of decryption authorities

Dk who are not cleared to see the investigator’s requests while still allowing for the ac-

countability properties described in Section 4.2.2. aOT provides a useful abstraction

for explaining the guarantees provided by our entire protocol. Along the way, we de-

fine other necessary protocol-specific primitives. A general overview of the underlying

cryptographic tools we employ can be found in Chapter 3, Section 3.2.
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4.3.1 Auditable Oblivious Transfer

Oblivious Transfer

Oblivious transfer was defined and surveyed in Chapter 3, Section 3.2.2. Blind IBE

extraction can be implemented via oblivious transfer, where we think of the holder

of the master IBE secret key msk as a sender S holding messages skid indexed by

identifiers id, queried by a receiver R who wants to extract a key for a particular

identity id [182]. Our protocol uses a threshold version of blind IBE extraction to

provide for decryption authorities who hold (shares of) a secret key separately from

the court, but who are not cleared to see the identifiers for which they are extracting

keys.

Auditable Oblivious Transfer

Formulating blind IBE extraction as an oblivious transfer does not meet our needs,

however, as no party or observer can prove that the key extracted via the protocol cor-

responds to the index authorized by the court. We therefore reformulate the concept

of oblivious transfer into a more suitable notion for our purposes, auditable oblivious

transfer (aOT), and give a construction by modifying an existing OT protocol. In

aOT, the participants specify a passive auditor party A, who will receive encrypted

audit records from the protocol but does not directly participate.

Specifically, in aOT, a trusted setup party T generates a key pair (pkA, skA) for a

public-key encryption scheme and a key pair (vkR, skR) for a digital signature scheme,

dealing them as required below.

We specify the inputs and outputs to aOT as:

inputs: S takes S = {m1, . . . ,ms} as well as vkR; R takes ` 2 {1, . . . , s}, (skR, pkA)

outputs: R receives m`, and S receives (ct, Sign (ct, skR)) where ct := Enc (pkA, `),

as well as a zero-knowledge proof ⇧A that ct is a valid encryption of `.
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In particular, unlike vanilla OT, the sender receives output from aOT, namely an

audit record containing an encryption of the index queried (under the auditor’s public

key pkA, so the sender does not learn the index queried) and a signature on that

ciphertext (under the receiver’s signing key skR, to prevent its repudiating the audit

record). The audit record also contains a zero-knowledge proof that this ciphertext

is a valid encryption of the index queried in the protocol. The public-key encryption

scheme used to create the encrypted audit entries should be chosen so as to make ⇧A

e�cient.

The notion of aOT described here provides online auditability. Specifically, sender

will detect if the zero-knowledge proof in the audit record fails, and can thus verify

that the audit record contains the index requested by the receiver. In many scenar-

ios, however, it su�ces that we provide o✏ine auditability, that is, a misbehaving

receiver can be detected after-the-fact. Informally, at the conclusion of an o✏ine aOT

protocol, the sender obtains an audit record which enables the auditor to obtain the

index that was requested (if the receiver is playing honestly) or to demonstrate cryp-

tographically that the receiver was misbehaving.

4.3.2 Sharing the IBE master secret

Our protocol also requires that the IBE master secret key msk be distributed among

a number of decryption authorities, a threshold group of whom are required for key

recovery and decryption. Specifically, we must perform IBE setup and key distribution

in a way that enables the accountable blind IBE extraction protocols mentioned above,

ideally without requiring a special trusted party to execute the setup operations. This

can be achieved by having each party generate their share of the master secret key

and publishing the corresponding public key, then combining these to obtain public

parameters using the techniques of Gennaro et al. [163].
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Similarly, we must extend blind IBE extraction to support threshold extraction

and key reconstruction, which can be done straightforwardly using a linear secret

sharing scheme such as that of Shamir. This was described in Chapter 3, Section 3.2.4.

Auditable Threshold Oblivious Transfer

Armed with these definitions, we can now describe the complete auditable thresh-

old oblivious transfer (threshold aOT), which describes the critical properties of our

protocol.

Auditable threshold oblivious transfer is a protocol between a receiver R, an

auditor A, and a subset of a tuple of active senders W ✓ (S1, . . . ,Sn). For simplicity,

we describe it informally here as an abstract multiparty functionality.

First, during a setup phase, a trusted party T generates two key pairs for a

public key encryption scheme, (pk⇤, sk⇤) and (pkA, skA) as well as a key pair for a

digital signature scheme, (vkR, skR). T also generates shares of the secret key sk⇤,

sk(1)⇤ , . . . , sk(n)⇤ , and distributes each sk(i)⇤ to the corresponding sender Si.

Let M = {m`}`2I be a set of messages indexed by some set I. Define C = {ct` :=
Enc(pk⇤, `,m`)}`2I to be the encryption of all messages in M under pk⇤.

Now, we can describe threshold aOT as a functionality computed by R [ �W ✓
{S1, . . . ,Sn}

�
by the relation:

inputs: R is given (C, pk⇤, skR, ` 2 I), each Si is given (sk(i)⇤ , vkR).

outputs: R obtains m` and each Si obtains an audit record (ct, Sign(ct, skR)) where ct :=

Enc(`, pkA) as well as a zero-knowledge proof ⇧A that ct is an encryption of `.

If all senders S1, . . . ,Sn collude, they learn nothing from the protocol beyond their

respective audit records, which in particular only disclose the index ` queried by R to

the auditor A. And if R colludes with a sub-threshold set of senders, the conspiracy
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learns nothing about the decryption of any ciphertext ct`0 2 C, `0 6= `. Finally, no

conspiracy of senders can learn anything about the queried index `.

As with aOT, we can similarly define the notion of o✏ine auditable threshold

oblivious transfer, where it su�ces that an after-the-fact audit can identify a misbe-

having receiver. Our protocol, described in Section 4.4, can be viewed as an o✏ine

threshold aOT between a sender comprising the auditor and all decryption authorities

and a receiver comprising the court and the investigator.

4.4 Protocol for Accountable Compelled Access

This section presents our full protocol, elaborating on the from Section 4.2.4. The

interaction between parties in the protocol is shown in Figure 4.2.

Protocol 2 (Formal).

Setup. The system is initialized as follows:

(i.) The decryption authorities Dk, k 2 {1, . . . , n} run SetupIBE using the distributed

protocols from Gennaro et al. [163] to generate public parameters and master

keys for the threshold BB-IBE scheme. Specifically, the distributed key gener-

ation protocol is needed to generate a tuple (g, g1,↵) in:

mpk :
⇣
g, g1 := g↵, h, v := e(g1, g2)

⌘
msk := g↵2

Publish mpk to all parties. Each authority Dk also publishes to all parties the

value vk = e(gk1 , g2) which corresponds to their share mski of msk, along with a

non-interactive zero knowledge proof of knowledge of the corresponding mski.

(ii.) The auditorA generates a key pair (pkA, skA) for a public key encryption scheme

and a separate signing and verification key pair for a digital signature scheme.

138



The auditor retains skA and the signing key, but publishes pkA and the verifi-

cation key to all parties.

(iii.) The court C and each decryption authority Dk generate key pairs for a

digital signature scheme and publish the verification keys to all parties:

(pkC, skC), {(pkDk
, skDk

})}.

(iv.) All parties, including the data sources Si, generate separate channel authenti-

cation keys for each channel on which they must communicate and publish the

corresponding verification key to all parties. Using TLS, these are just auxil-

iary signing and verification key pairs used to authenticate handshake messages

when the channel is opened.

(v.) The auditor A maintains a counter ctr, initially 0 and incremented after each

decryption transaction.

Normal Operation of the system involves encrypting records at time intervals t.

(i.) After each interval t, each data source Si computes:

ct1 := EncIBE (mpk, (i, j, t) , ri,j,t)

ct2 := Enc (H (ri,j,t) , xi,j,t)

Where ri,j,t is a random element of GT chosen by Si and H is a public hash

function modeled as a random oracle. This technique, which we refer to as

hybrid encryption, comes directly from Green and Hohenberger [182] and is

useful for bounding the size of the record which must be encrypted using EncIBE.

(ii.) Si sends (or makes available) the ciphertext cti,j,t := (ct1, ct2) to I.

Investigator Queries. Over a secure channel, I can send signed requests to the court

C for access to the record with a particular tag id = (i, j, t). These requests are
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recorded by the auditor A. If C approves the request, it issues a legal order and takes

the following actions:

(i.) C reads the current state of the counter ctr at A.

(ii.) The court then issues an order, ctC := Enc(pkA, ctr, id), and sends a signed copy

to the auditor A. We denote by randC the randomness used in generating ctC.

(iii.) The court then sends the order and the value of ctr to each of the decryption

authorities, D1, . . . ,Dn in turn, and initiates the threshold blind IBE extraction

protocol described in Chapter 3, Section 3.2.2. In addition to this protocol, the

court also proves to each authority Dk in zero knowledge that it knows how

to unblind the value id it committed to in the blinded IBE extraction request,

providing ⇧ctC . In addition to the syntactic checks required by threshold blind

IBE extraction, Dk validates the syntactic correctness of the order (i.e., that

the signature is valid, that the blind extraction request is acceptable), aborting

if these checks fail. This allows the court to obtain a blinded share sk(k)id of skid.

Dk receives from this auditable oblivious transfer protocol an audit record A,

which it submits to A along with the order and proof ⇧ctC it received from

the court, all digitally signed. Specifically, each Dk submits (⌧, �) where ⌧ :=

{A, ctC,⇧ctC}, � := Sign(pkDk
, ⌧). The audit record in this case contains the id

and randomness needed to open the commitment in the blinded IBE request,

encrypted under the auditor’s public key, A := Enc(pkA, {id, randC}).

(iv.) Once the court has all n blinded shares of skid, it combines them to obtain skid,

and returns skid to I.

(v.) The investigator decrypts xi,j,t = DecIBE(skid, ctid).

This protocol guarantees the o✏ine accountability of all parties: any misbehavior

can be detected by an overseer using the audit record. It is straightforward (and only

modestly less e�cient) to extend the protocol so that it provides online accountability,

140



in the sense that every party will always detect misbehavior immediately and can

abort the protocol. Online accountability can be achieved if the court includes an

additional zero-knowledge proof in its blind decryption request, proving that the

blinded id in its decryption request is consistent with the encrypted id in the audit

record. To facilitate these zero-knowledge proofs, one could use the CHK encryption

scheme [61,80] to encrypt the entries in the audit log. By using the CHK scheme (with

BB-IBE), these additional zero-knowledge proofs amount to “proving relations in the

exponent,” and can be done using standard extensions of Schnorr proofs [105, 329].

4.5 Prototype Implementation

We implemented the protocol of Section 4.4. Our implementation work can be bro-

ken down into two primary pieces corresponding to the two operational phases of

Protocol 2: a component for encrypting records during ordinary operation, and a set

of components for handling investigator queries, each component taking the role of

one of the parties shown in Figure 4.2. We present benchmarks for both pieces in

Section 4.6. We used a 128-bit security level across the board in our implementation;

consistent with this, we use a 289-bit MNT elliptic curve for our algebraic and pairing

operations and 3072-bit RSA signatures and hybrid public-key encryption.8

The encryption portion of our implementation consists largely of a novel imple-

mentation of the Boneh-Boyen identity based encryption (BB-IBE) scheme [60], based

on the PBC library [256] for elliptic-curve and pairing support, the GNU Multiple

Precision Arithmetic Library (GMP) for large number support, and PolarSSL for

basic cryptographic primitives, including RSA. Our implementation uses hybrid en-

cryption with AES/GCM at the 128-bit security level for both BB-IBE and standard

public-key encryption. We used SHA-256 to derive an identity for BB-IBE from a

8It would be straightforward to extend this to 256-bit security, at the cost of approximately a
2x slowdown in our IBE primitives (the main computational bottleneck) according to our initial
measurements.
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suitably encoded form of the record tag (i, j, t). This portion of our implementation

required approximately 7,800 lines of C++ code.

Our implementation supports investigator queries using a constellation of party

binaries that link against the core cryptographic component described above. These

party scripts use PolarSSL to secure mutually authenticated TLS channels between

all parties (each party has two public/private key pairs, one for encryption and one

for message signing and channel authentication, with keys distributed manually as

per our trusted key exchange assumption). Together, these binaries required less than

1,000 additional lines of C++.

4.5.1 Deployment Concerns

Any real deployment of our protocol will have to reckon with complex deployment

issues that determine its e↵ectiveness. The goal of our proof-of-concept implementa-

tion is to demonstrate the viability and performance of our core approach, so it does

not address these interesting problems. However, we summarize some of the more

interesting deployment concerns here and consider how to address them.

Imprecise Record Tags

In some applications, the record tag may not be a clean set of indices (i, j, t) as we

have described, but rather something like a person’s name or address, which could

have many forms or be subject to misspelling. Because our protocol uses the tag

as an IBE identity, any variation in the tag will lead to the underlying records only

being decryptable by di↵erent keys. Hence, our protocol inherently requires that tags

be canonicalized prior to encryption. Ideally, this canonicalization can be done in

a standard, publicly verifiable way that does not require the sharing of metadata

between data sources and the investigator. Verifiability is important to ensure during

an audit that the canonicalization was performed properly and cannot be abused by
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the investigator to gain access to a di↵erent set of records than the court believes

it is unsealing. One approach would be for all parties to agree ahead of time on a

particular locality-sensitive hash function [325].

Many important application scenarios do not require this type of clustering of

record tags, such as applications where our protocol is used to protect access to

telephony metadata or cloud service provider business records, both of which naturally

give robust identifiers to all data subjects.

Multiple Investigative Authorities

It is interesting to consider how our protocol applies in the case of multiple, collaborat-

ing investigators, such as might exist in the context of a law enforcement investigation

spanning many jurisdictions or agencies. Certainly, a court can grant an order for any

investigative body it recognizes. Our protocol supports this in a direct way—many

di↵erent investigators can receive ciphertext from data sources (or ciphertext can be

held either by a special custodian party or simply by the data sources themselves

and be queried as necessary) and make requests of the court, with the source of each

request recorded by the auditor.

More interesting is the case where multiple investigators collaborate and must

share information, but we wish to constrain this sharing and guarantee its account-

ability. Our protocol only allows tracking of authorization to access information via

an order; analysis of what happens to that information after it is disclosed, while an

interesting, di�cult, and well studied problem, is beyond the scope of this work.

Non-localized record analysis

Our algorithm focuses on the accountability of information disclosure via a court

order, leaving aside the rich and extensive literature on what sorts of analysis can

be performed without disclosing data in the first place. Our protocol is not suited to
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most kinds of non-local analysis of compelled data (i.e., analysis which considers many

records, as opposed to analysis of the records for a particular individual). Under our

protocol, each individual record to be included in the broad analysis would require a

separate order, with a separate investigator query to generate a per-record decryption

key.9 While we take no position on the advisability or utility of such practices, they

are known to be of interest in real law-enforcement scenarios.10

Without summarizing the vast literature describing computation on encrypted

data, we remark briefly on work that touches specifically on the problem we set forth

in this work, namely accountable compelled analysis of data records by an investi-

gator subject to restrictions and oversight by a court. Segal, Ford, and Feigenbaum

propose using a private set intersection protocol to accountably determine co-located

cell phones using so-called cell tower “dumps”, or logs of all devices which connected

to a certain antenna in a certain time period [330]. Kamara similarly suggests using

a combination of structured encryption and secure function evaluation in a protocol

called MetaCrypt [221], although MetaCrypt’s graph-based approach to authoriza-

tion makes its focus and applicability somewhat narrower than ours. Earlier work

by Kamara [220] suggests using Private Information Retrieval techniques to achieve

the same goals. Recent work by Bates et al. [30] addresses the problem of account-

able wiretapping, but does so with a very wiretapping-specific model that does not

facilitate accountability for facts beyond whether an interception happened during

an approved window. Bates et al. also use purely symmetric cryptography, meaning

that many parties to their protocol must hold and protect long-term secrets. Also,

Bates et al. do not describe what accountability means in their model; this is not

9Decryption per-record could be avoided by mandating that sources generate a pseudo-record
that contains all of the required data and requesting decryption only of the pseudo-record.

10For example, it has been disclosed that the N.S.A. uses various analyses that operate on the “so-
cial graph” of communicating people. See for example James Risen and Laura Poitras, “N.S.A. Gath-
ers Data on Social Connections of U.S. Citizens”, The New York Times, 28 September 2013, http:
//www.nytimes.com/2013/09/29/us/nsa-examines-social-networks-of-us-citizens.html
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uncommon—the term is often used imprecisely in computer science, as we survey in

Chapter 2.

From an accountability perspective, the fact that our protocol does not support

such non-local analysis is advantageous to an investigator that wishes to demonstrate

that it only accesses records in a particularized way. This argument is the motivation

for the similar work of Liu, Ryan, and Chen, who further suggest that side channel

information in the length and number of entries of a fully encrypted audit log is

a useful tool for public accountability [251]. Our approach provides this same side

channel information in addition to its other publicly verifiable properties.

4.6 Evaluation

We benchmarked our implementation using synthetic data corresponding to a real-

istic deployment scenario: the protection of telephony metadata in a large country,

such as the program operated by the United States National Security Agency dis-

closed by Edward Snowden.11 Specifically, we assume that a small handful of carriers

are recording metadata on approximately 500,000,000 telephone numbers; that the

investigator seeks orders with a 1-day granularity per the direction of the FISA court

that records be submitted to NSA on “an ongoing daily basis”; and that anyone can

build a record tag (i, j, t) by selecting (i.) the name of a carrier i, (ii.) a phone number

of interest j, and (iii.) the date t on which the metadata were generated.

11Under this program, the N.S.A. collected all “call detail records” on “an ongoing
daily basis. See a summary of the program and the order from the Foreign Intelli-
gence Surveillance Court authorizing it in Glenn Greenwald, “NSA collecting phone records
of millions of Verizon customers”, The Guardian, 6 June 2013, http://www.nytimes.com/

2013/09/29/us/nsa-examines-social-networks-of-us-citizens.html. Although the Snow-
den disclosures only named Verizon Business Services as a source of metadata, the Di-
rector of National Intelligence later confirmed that the program is “broad in scope”
(See http://www.dni.gov/index.php/newsroom/press-releases/191-press-releases-2013/

868-dni-statement-on-recent-unauthorized-disclosures-of-classified-information). It
is believed by experts to cover a large fraction of all American telephone carriers.
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Our system operates in two major modes: (i.) An encryption mode, the mode of

normal operation, in which data sources encrypt records; and (ii.) An investigation

mode, in which the investigator requests the decryption of a specific record. We

examine the performance of these modes in turn.

4.6.1 Encryption Benchmarks

Under normal system operation, each Si will hybrid-encrypt records under a tag de-

termined as described in Section 4.5. Table 4.1 gives the average time per record

for the hybrid encryption of 500,000,000 records ranging from 1-16 kB each, along

with a breakdown of the average times for IBE-encrypting an AES key and AES-

encrypting the record itself. We further give the total number of CPU-hours required

to encrypt the full database of 500,000,000 records, as well as an estimated number of

hours for performing the same computation on one standard data center rack worth

of computing hardware.12 The encryption process is entirely parallelizable and, in the

deployment scenario we consider, would be distributed among all telecommunications

providers in a country, with each provider only responsible for encrypting the records

of their own customers. These benchmarks show that encrypting the telephone meta-

data of all users in a large country at a granularity of once per day would cost only a

few hours of computing time on modest infrastructure and is thus very much feasible

using even our (un-optimized) prototype.

Our prototype requires a storage overhead of 936 bytes per record for hybrid

encryption, yielding a total storage cost of just under 2GB per one million records

when the underlying records are 1kB.

12We assume a standard 42-unit rack, with 16 cores per rack unit, giving 640 cores per rack.
We believe that such a small investment in infrastructure is o↵set by the compensating gains in
accountability, especially as the infrastructure would be distributed among many data sources.
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These experiments were conducted on a cluster of about 550 cores divided across

52 machines running Linux 2.6.32 on 64-bit x86 chips running at between 2 and 3

GHz.

We observe that, at May 2015 prices, our benchmarks imply a cost of approxi-

mately $0.10-$0.13 per 1 million record encryptions on Amazon’s Elastic Map Reduce

cluster computing rental service, depending on the record size. Thus, encrypting the

whole database of 500,000,000 identifers per day would cost between $50 and $65.

4.6.2 Investigation Benchmarks

When the court approves a request by the investigator, it must also engage in blind

key extraction with all decryption authorities serially. Table 4.2 reports the end-to-

end latency experienced by the investigator for configurations with 1, 2, 4, and 8

decryption authorities. We also report the bandwidth requirements between parties

in Table 4.3.

The end-to-end timing results in Table 4.2 show clearly that it takes only a few sec-

onds for our prototype to process a single decryption request. Even with 8 decryption

authorities, the protocol completes in under 3 seconds. We believe this is acceptable

for practical purposes since we would expect the court to spend more than a couple

of seconds to review the investigator’s request before executing the protocol. Thus,

it is unlikely that our request handling protocol impedes the execution of orders. As

expected, the IBE operations for blind extraction dominate the total cost of the proto-

col. For example, with 8 decryption authorities, the IBE operations constitute 80% of

the total end-to-end processing time. Moreover, the computation time scales linearly

with the number of decryption authorities. For instance, when we double the number

of decryption authorities from 4 to 8, the time needed for the blind extraction portion

of the protocol also increases by roughly a factor of 2. We found that standard crypto-
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Number of
decryption
authorities

Average
end-to-end
time for

decryption (s)

Average total
time for blind

IBE
operations (s)

1 1.22 0.79
2 1.28 0.87
4 1.69 1.28
8 2.69 2.17

Table 4.2: The average end-to-end time (n = 10, 000; initial measurements of the
distribution of request times show that variance is minimal) to process an order in
our prototype, along with the average total time required for all blind IBE operations
across all parties, shown for configurations with 1, 2, 4, and 8 decryption authorities.

Parties Outbound
Tra�c (kB)

Inbound
Tra�c (kB)

(Investigator, Court) 1.45 1.00
(Court, Decryptor) 1.16 1.00

(Court, Log) 2.23 0.01
(Decryptor, Log) 1.54 2.24

Table 4.3: The amount of communication required for processing an order in our pro-
totype. For a pair of parties (A,B), we count bytes sent from A to B as “outbound”
tra�c, and bytes sent from B to A as “inbound” tra�c. When we write (Court,
Decryptor), we denote the tra�c from the court to each decryptor, and likewise for
(Decryptor, Log). These measurements only include data sent at the application
layer, and do not, in particular, include the extra bandwidth needed for TLS.

graphic operations (TLS handshakes, RSA signing/verification/encryption, hashing)

added only minimal overhead to our implementation.

Our bandwidth measurements (shown in Table 4.3) demonstrate that our proto-

col is extremely bandwidth-e�cient. Processing a decryption request never requires

more than 3kB of total communication between any pair of parties. While the total

bandwidth for the court and the log does increase linearly in the number of decryp-

tion authorities, even with 100 authorities the total communication required of each

party is still less than half a megabyte. This shows that bandwidth is unlikely to be a
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bottleneck in processing requests; rather, the expensive BB-IBE operations dominate

the overall cost of the request handling protocol.

The timing experiments were arranged with all parties on di↵erent machines, with

the machines connected by a rack-local network. Due to this proximity, we found that

network delays were not a significant factor in measuring either the absolute end-to-

end system operation time nor for the variance. Each of these machines was running

64-bit Ubuntu 12.04 with a quad-core Intel i3 processor running at 2.3 GHz and 8

GB of RAM.

4.7 Related Literature

Although we have already contextualized the design and construction of accountable

systems in Chapter 2 and the necessary cryptographic primitives in Chapter 3, it is

useful to give a very brief, very narrow review of literature related to the protocol

and application scenario discussed in this chapter.

Compelled access to data by law enforcement is closely related to the well stud-

ied question of key escrow systems [34, 118, 241, 286], which have provoked a strong

negative reaction from the technical community [1,2,52]. Particularly relevant is the

controversial and failed Escrowed Encryption Standard (EES), which provided access

to encrypted communications for law enforcement investigation purposes by leak-

ing encrypted key material through a Law Enforcement Access Field (LEAF) [286].

The protocols in EES lacked su�cient authentication and allowed the leaking of key

material more widely [52]. EES did not provide any standard for accountability or

control of access to LEAF data, contributing to the technical community’s opposi-

tion to the standard and its deployment; many scholars asserted that the existence

of LEAF data presented an inherent risk to the overall security of communications
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under a LEAF-accessible key [1], opposition which continues to similar proposals to

this day [2].

Another closely related line of work uses IBE to provide various types of oblivious

authorization [62, 115, 362]. De Cristofaro et al. [115] develop a generalized notion

of Private Information Retrieval and Private Set Intersection that supports a native

notion of access control. Boneh et al. [62] develop a primitive they call public key en-

cryption with keyword search that implies a construction of IBE, which uses oblivious

authorizations to determine whether a specified keyword is in a stream of encrypted

data. The work of Waters et al. [362] on building a searchable encrypted audit log

using IBE is somewhat closer to our work, in part because of their use of IBE to

eliminate the need for long-term secrets held by the data sources. However, in their

setting, their policy-setting party (the “audit escrow agent”) holds the master IBE

secret key, and so can compromise the security of the protocol if it misbehaves. Our

protocol uses a combination of separation of concerns and threshold decryption to

maintain end-to-end auditability. In particular, this is the major advantage of our

new notion, aOT.

Section 4.5 summarized the closely related works of Segal et al. [330], Kamara [220,

221], Liu et al. [251], and Bates et al. [30] which are similar in their goals to our work

but di↵er significantly in approach and scope. The most similar of these, the work

of Liu et al., is focused on a kind of accountable key escrow for end-to-end encrypted

systems and is orthogonal to our goal of building accountability protocols for cleartext

data records. In contrast to Liu et al., we provide an implementation and benchmarks

and use IBE to avoid the need for independent per-user keys and the concomitant key

management issues. Liu et al. also focus heavily on formally modeling the correctness

of their access policy and the invariants it provides, but they do not conceptualize

accountability as enabling the context required by their protocol for oversight.
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4.8 Discussion and Extensions

We have presented a general protocol that provides cryptographic guarantees facili-

tating accountability for the process of compelling access to data using legal orders

such as warrants. Our protocol has many desirable properties:

(i.) Any request for data validly approved by the court will result in the decryption

of the authorized record. In this way, the protocol also serves to enable a proof

of performance for accountability.

(ii.) No record can be decrypted without the authorization of the court. The cor-

rectness of every decryption can be verified o✏ine: misbehavior by any party

will be detected after the fact by an overseer.

(iii.) A third party not participating in the protocol can verify these facts and learns

side channel information, such as how many decryption requests have been made

and how many orders have been issued.

(iv.) Only the investigator and the court learn the identities corresponding to de-

crypted records. Ciphertexts can be identified by IBE identities and need not

be stored with sensitive metadata.

(v.) A privileged oversight party can later confirm which records were authorized

for decryption and that these match the records actually decrypted.

(vi.) No single party or machine in the system can compromise the above properties.

(vii.) Key management is straightforward: data sources do not need to retain long-

term secrets; the system’s master secrets are only used in a threshold manner

and are never reconstructed; IBE allows us to compress many record-specific

keys onto a single master key pair.

In particular, our protocol can be used to enable e↵ective oversight of compelled access

by law enforcement to data held by communications service providers, a problem of
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real-world interest, making that access accountable to the political, legal, and social

context in which it operates.

4.8.1 Extensions

We sketch some interesting extensions to our protocol:

Using a mix of cleared and uncleared authorities In our protocol, the decryp-

tion authorities Dk do not know which records they are extracting identity key shares

for. However, it may be desirable for some or all authorities to be authorized to know

which records are decrypted. Our protocol generalizes easily to cover this case—the

court simply omits the blinding mechanism from the IBE extraction protocol for the

cleared authorities, while employing it for the uncleared authorities. This results in

a simpler and minimally more e�cient protocol for the cleared authorities.

Access control within record time intervals Our setting, in which data sources

encrypt all records xi,j,t for a particular user j in a time interval t under the same IBE

identity (i, j, t), has the property that if any records in a time interval are disclosed,

they will all be disclosed. We suggested in Section 4.2 that this can be mitigated by

choosing short, granular time intervals (possibly even placing each record into its own

interval). But this comes at the cost of requiring (possibly many) more requests by

the investigator to cover large spans of time.13 It is therefore natural to want access

control within a single record interval. A simple solution is to encrypt records under

the precise time T at which they are generated, using the record tag (i, j, T ), then to

re-encrypt these records under the broader record tag (i, j, t). Using this scheme, the

investigator gains access to tra�c analysis data for the entire interval t, but can be

13Also, to avoid tra�c analysis, data sources must generate many dummy records when time
intervals are short.
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restricted to requesting specific record contents for particular times T . This extension

is similar in setting but di↵erent in approach to the work of De Cristofaro et al. [115].

Control of escrowed key materials While we have described our protocol as

protecting access to cleartext records such as communications metadata held by data

sources, a straightforward application is to the case where these records themselves are

the cryptographic keys used for end-to-end encryption by users of a communications

service, possibly escrowed under a source-specific key pkSi or a law enforcement key

pkI or stored with other metadata in a LEAF [118, 286]. Our protocol could be used

to provide accountability for such a system. However, we do not suggest that such

an application would be wise as a matter of policy—such systems have been heavily

criticized as being inherently risky and a source of vulnerabilities [1,2,52]. We believe

that our system is better suited to controlling the additional risks of compelled access

in scenarios were data are already collected and retained.

4.8.2 On selecting Decryption Authorities

We conclude by remarking on the practical di�culty of selecting a trustworthy set

of decryption authorities. While the selection of decryption authorities might be

straightforward in some applications (e.g., when all authorities are cleared to see

unblinded requests, as in the case where our protocol is used to protect escalations

by support sta↵ to access a user’s escrowed key material which encrypts their cloud

storage locker), the application of our protocol specifically and the notion of cryp-

tographic accountability generally is di�cult in the context of protecting access to

records by law enforcement. It is necessary that all decryption authorities be trustwor-

thy enough to reliably hold long-term secret shares without compromise, as re-keying

and re-encrypting existing ciphertext may be prohibitively expensive. Further, it is

necessary that the set of decryption authorities and overseers be expansive enough
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that the political process governing the compelled access regime can reasonably be-

lieve that at least one competent authority will always object in the case that it

detects misbehavior. These conflicting requirements come into even greater tension

in settings where law enforcement access is multi-jurisdictional, especially if the ju-

risdictions span national borders.

While we cannot claim that a protocol such as ours completely solves the problem

of making compelled data access accountable, we feel that our protocol provides

interesting and useful knowledge about the space of possible designs for systems and

processes that manage the oversight of compelled data access, a practice which is

common, growing in importance for law enforcement, and increasingly a topic of

public discussion. In particular, while we do not take a position on the rightness or

legality of any particular data access regime, we do believe that any such regime should

at least have strong accountability, providing strong evidence of any misbehavior

while simultaneously guaranteeing, even to unprivileged observers, the enforcement

of known policy requirements. Our protocol achieves such accountability.

Finally, our protocol is an excellent example of the technique of using cryptog-

raphy to provide technical assurances that facilitate accountability when the policy

to enforce is known and fixed. In the following chapters, Chapters 5 and 6, we turn

to the question of how to use cryptography to facilitate accountability even when no

policy can be decided on in advance.
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Chapter 5

Constructing Accountable

Algorithms

In this chapter, we turn our attention to what happens when no well-defined specifi-

cation of acceptable behavior is available in advance of a system’s development and

deployment. In this case, traditional human-operated processes turn to oversight,

or the nomination of some competent authority to determine the boundary between

acceptable and unacceptable outcomes of a decision process, on a case-by-case basis.

Usually, that authority also holds the power to demand under penalty of punishment

the information required to review individual decisions. We propose that the same

kind of oversight can be applied to the execution of automated decisions by computer

systems: a designated oversight authority, empowered to demand information about

individual decisions, can review those decisions for consistency with the law or with

social or political values. To accomplish this, we need a way to bind the execution of

a computer program closely to its inputs and outputs, ideally in a way that preserves

legitimate secrecy. In this way, we can verify that the oversight authority can re-

view the actual justification (in terms of policy and input) for the announced output

(i.e., we can show publicly that the authority can review what actually happened
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in a given decision). One way to achieve this is for the decision maker to give a

zero-knowledge proof that it knows a full execution trace for the decision process us-

ing particular inputs and yielding particular outputs. The protocol described in this

chapter combines this core technique of proving knowledge of a policy execution with

cryptographic commitments to specify arguments and results. Our protocol enables

designated authorities and the general public to review the specifics of decisions by an

automated process, thereby providing robust oversight and accountability for decision

makers.

We begin by describing a formal model of our setting in Section 5.1, and describe

our protocol as parametrized over abstract primitives in Section 5.2. Section 5.3 de-

scribes a concrete realization of our protocol using primitives introduced in Chapter 3.

Our implementation of this realization, its evaluation, and some example application

scenarios are described in Chapter 6.

5.1 Setting and Model

We assume that an agency or authority A is making algorithmically mediated decisions

about a group of N data subjects (denoted as S1 . . . SN). These decisions are subject

to oversight by an overseer O. In our tax audit example from Chapter 1, the tax

authority plays the role of the authority A, each taxpayer plays the role of a subject

Si, and the role of the overseer O is played by a court, a legislative committee, or

the tax authority’s internal Inspector General’s O�ce. We model each party as a

computationally bounded process.

A chooses a policy, which comprises secret policy data ŷ 2 Y1 and a public function

f : X ⇥ Y ⇥ {0, 1}k 7! {0, 1}`, operating on a subject-specific value x̂i 2 X and

a suitably chosen random seed of k bits, and returns ẑi, an `-bit output which is

the result of applying the policy for subject Si using the given random seed. As an

1If the entire policy is public, ŷ may be nil.
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example, a tax authority might adopt a policy saying “audit each taxpayer with a

probability proportional to their total gross income”. We assume that each subject

can prove the correct value for his own subject-specific data x̂i. (In our tax audit

example, this corresponds to each subject asserting what values it submitted in its

tax filing).

Any aspect of the policy that is public will be built into f , and ŷ will represent

the non-public aspects of the policy. If A wishes to hold his function f oblivious

to Si, he may use a public function which can execute some class of functions F
obliviously. In the limit, f would be an emulator for a general-purpose, Turing-

equivalent RAM machine and a program to be executed by that machine would be

incorporated into ŷ. Previous work has shown how to use zk-SNARKs to build

tolerably e�cient oblivious computations for the class of Turing-equivalent functions

[39, 42, 291]. However, generalizing over smaller classes of functions (thereby leaking

partial information about A’s function, namely to which family of functions F it

belongs) can lead to significant gains in e�ciency, as generalizing to Turing-equivalent

RAM machines has considerable overhead.

An overriding design goal for our protocol is that the steps required of the Sis

should not change when building an accountable automated decision process. Thus,

our protocol is non-interactive and only ever requires optional verification steps from

the Sis, O, or a curious member of the public. This design goes even as far as

determining how the parties will communicate: we assume that the parties share a

public log L for proofs and other public messages, which A can write into and any

other player can read. We assume the contents of the log are authenticated, that the

log is append-only, and that its contents are never in dispute. We also assume that

A has an authenticated and confidential channel to send private messages to each Si
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and to O.2 We also assume the existence of a random beacon that can produce a

uniform random value bi 2 {0, 1}k outside the control of any party.

The protocol must protect the confidentiality of ŷ, which can be known only to A

and O, and the confidentiality of each subject’s private data x̂i, which can be known

only to A and Si.

O’s job is to make sure that the policy being used by A is acceptable, meaning

that it is lawful and (if A is a government agency) consistent with public values.

Determinations of legality and values-consistency can be di�cult and time-consuming

to make, so we do not assume that the set of acceptable policies is known or readily

computable. Instead, we assume that O has access to an oracle O that determines

the acceptability of A’s policy, O(f, ŷ) ! {accept, reject}. Queries to this oracle

are assumed to be very expensive and so can only be issued occasionally. (Real-life

oversight requires the time and attention of a court, legislator, or high-ranking o�cial,

which is scarce, and might involve a lengthy investigation or deliberation.)

O can demand that A reveal ŷ and can punish A if A fails to reveal ŷ, or if A’s

policy (i.e., the partial application f(·, ŷ, ·)) is unacceptable, or if A refuses to follow

the protocol. We assume A will act to avoid this punishment. A has an approximate

model of how the oracle will behave, and A will try to balance the risk of adopting

an unacceptable policy against A’s other legitimate objectives (such as the goal of

deterring tax evasion, if A is a tax authority).

5.2 Accountable Algorithms: A General Protocol

We describe here a protocol for achieving accountable algorithms in the setting de-

scribed above. Our protocol relies on a few abstract primitives: (i.) a zero-knowledge

proof scheme ZKP = {Prove,Verify} amenable to protocols for verified computation;

2In practice, we anticipate that these channels might be realized via physical mail, as this requires
no setup on the part of any decision subject.
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function CommitEpoch(f, ŷ) . At TCOMMIT

⇢
R � {0, 1}k, (C⇢, r⇢) Commit [⇢]

(C
ŷ

, r
ŷ

) Commit [ŷ]
AuthenticatedWriteToLog

(f, C
ŷ

, C⇢)
EndLog

end function

function RandomnessEpoch(bi) . At TRANDOM(Optional)
ReceiveFromPublicSource

bi
R � {0, 1}k

EndReceive
(randi, ⇡randi) V⇢(x̂ikbi)
R = c1c2 · · · ck  G(randi), (CR, rR) Commit [R]
AuthenticatedWriteToLog

(bi, CR, ⇡randi)
EndLog

end function

function DecisionEpoch(f, ŷ, x̂i, ⇢, bi) . At TDECISION

1.(C
x̂i , rx̂i) Commit [x̂i], 2.ẑi  f (x̂i, ŷ, R), 3.(C

ẑi , rẑi) Commit [ẑi]

⇧i  Prove

2

6666664

Given (C
ŷ

, C⇢, Cx̂i , Cẑi), the prover A knows a witness
w = (ŷ, x̂i, ẑi, rx̂i , rẑi , ⇢) such that

ẑi = f (x̂i, ŷ, R) and
(C

ŷ

, r
ŷ

) = Commit [ŷ] , (C
x̂i , rx̂i) = Commit [x̂i]

(C
ẑi , rẑi) = Commit [ẑi] , (C⇢, r⇢) = Commit [⇢] ,

(CR, rR) = Commit [R] ,⇤ and Verify [⇡randi ] = 1.⇤

3

7777775

AuthenticatedWriteToLog
(C

x̂i , Cẑi ,⇧i)
EndLog
SendAuthenticatedOverSecureChannel(Si)

(ẑi, rẑi , rx̂i)
EndSend

end function

function OversightEpoch(ŷ, r
ŷ

) . At TOVERSIGHT (Optional)
SendAuthenticatedOverSecureChannel(O)

(ŷ, r
ŷ

)
EndSend

end function

Figure 5.1: The core accountable algorithms protocol, written as a set of randomized
algorithms executed by the decision maker A, with one function per epoch. The state-
ments designated by ⇤ in the zero-knowledge proof are only included if the decision
maker’s policy is randomized and TRANDOM occurred.
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Written by
A into Log

A computes and knows
secretly

Learned by
each Si over a
confidential
channel

TCOMMIT

f
C

ŷ

C⇢

ŷ, r
ŷ

⇢, r⇢

TRANDOM⇤ (b, CR, ⇡randi)
(randi, ⇡randi) = V⇢(x̂ikbi)

R G(randi)

TDECISION

C
ẑi

C
x̂i

⇧i

ẑi = f (x̂i, ŷ, R) , r
ẑi

x̂i, rx̂i

ẑi, rẑi , rx̂i

Figure 5.2: The core accountable algorithms protocol proceeds in three epochs (shown
here as rows): TCOMMIT, TRANDOM, and TDECISION. In each epoch, the decision maker
authenticates values by signing them under a key known to all parties and enters
them into the log as shown. In TRANDOM (which occurs only if the decision maker’s
policy is randomized), a uniform random value chosen beyond the control of any

party, bi
R � {0, 1}k, becomes available to all parties by assumption; A authenticates

this value and enters it into the log. In TDECISION, the prover A sends a decision and
other values separately to each Si over a confidential, authenticated channel as shown.
An optional final epoch TOVERSIGHT, is not shown. During this epoch, the oversight
body O may demand to learn A’s secret policy and its commitment key (ŷ, r

ŷ

).

(ii.) a secure commitment scheme, C = {Commit,VerifyCommitment}; (iii.) a signa-

ture scheme S = {Sign,Verify}; and (iv.) in the case the decision policy function f is

randomized, a verifiable random function V and a pseudorandom generator G. These

abstract primitives were developed in Chapter 3, signatures in Section 3.1.1, zero

knowledge in Section 3.1.2, commitments in Section 3.3.1, and verifiable pseudoran-

domness in Section 3.3.3. We describe a realization of this protocol using concrete

primitives in Section 5.3.

5.2.1 Protocol

Our protocol proceeds in four epochs, TCOMMIT, TRANDOM, TDECISION, and an optional

TOVERSIGHT. TCOMMIT and TRANDOM happen before the time when the algorithmically

mediated decision result ẑi is computed and TDECISION happens at the time of the

161



decision. TOVERSIGHT, when it does happen, will happen after the decision has been

announced to the a↵ected subject. In each epoch, the decision making agency A

computes values and publishes an authenticated (i.e., signed under a key known to

all parties) copy of some of these values in a public, append-only log. For brevity,

we often omit the authentication in the description below. In the final epoch, the

oversight body, O, can demand to learn some of A’s secrets. Figure 5.1, shows the

protocol steps as algorithms executed by A. Figure 5.2 summarizes the state of

knowledge of the parties and the values in the log in each epoch. We describe the

steps taken by A in each epoch below:

TCOMMIT

In TCOMMIT, the authority A specifies its decision policy: it publishes a public function

f as well as a commitment C
ŷ

to ŷ, comprising any secret portion of the policy which

is common to all decision instances (e.g., trained weights for a machine learning

classification model). A also generates and commits to a k-bit random key ⇢  
{0, 1}k for a VRF. The commitment function will generate random keys r

ŷ

, r⇢ that

can be used later to open and verify these commitments. Whenever A generates a

commitment, A publishes the commitment into the log and retains the commitment

key as a secret.

TRANDOM

If A’s decision policy requires any random coins, they are generated during TRANDOM.

Otherwise, the protocol moves ahead to TDECISION. We observe that, although the

decision maker will always need random bits to issue commitments, we need not

verify the unpredictability of these bits to the decision maker—the unpredictability

of these bits protects the decision maker from information leaks, but as the decision

maker could always simply disclose the information committed to, we do not consider
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manipulation of these bits to be an attack and leave the decision maker free to acquire

them however it wishes. Verifying the commitments does not require any random bits,

as the random keys for the commitments will be supplied as inputs to the circuit.

TRANDOM and the activities described in this section apply specifically to random coins

required by the decision policy function f .

In TRANDOM, a public random value bi  {0, 1}k is revealed and entered into

the log. By assumption, this value is drawn uniformly at random from {0, 1}k. We

further assume that this value is uniquely identified with a particular Si. Section 5.2.2

discusses the reasons for this assumption, ways this mapping might be achieved, and

ways to ameliorate it.

In practice, such a value could be supplied by a random beacon [305] or from

some public ceremony performed by A or by one or more other trusted entities on A’s

behalf [134].3

TRANDOM : bi
R � {0, 1}k

Using bi, the decision maker A computes a seed randi for a pseudorandom generator

G using his secret key ⇢, the input of the decision instance under consideration x̂i,

and the trusted random value bi revealed during TRANDOM. A computes this seed using

a verifiable random function. A also computes all k of the random coins he will need

using G to get R = c1c2 · · · ck, commits to R, and records this commitment in the

log.

(randi, ⇡randi) = V⇢(x̂ikbi)

Here, V⇢ is a verifiable random function keyed by the decision maker’s secret key ⇢

used to digest these disparate values into a single seed. The decision maker also enters

3If the ceremony is performed by multiple entities, a fair randomness protocol (these are described
in Chapter 3, Section 3.3.4) may be used to make trust in any single participating party su�cient.
This technique allows many mutually distrustful parties to participate in generating b

i

in such a
way that most users would be able to trust at least one participant to be honest, and therefore to
trust that b

i

is in fact chosen at random. In this way, this step can be realized while adding only
minimally to the trust requirements of the overall protocol.
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into the log the proof of correct seed extraction ⇡randi . The string R contains all of

the random coins needed by the evaluation of A’s decision policy.

We again observe that the nature of the generator used to expand randi to R is

not material to our analysis, so long as the function itself is disclosed. Any secure

pseudorandom generator will work (and the generator itself need not be secret as randi

is secret), but the oversight body must know which generator was used. Therefore,

we require that A also record a copy of G in the log.

TDECISION

In TDECISION, the authority A computes several values for each subject Si under con-

sideration:

• ẑi = f (x̂i, ŷ, R)

• (C
ẑi , rẑi) = Commit [ẑi]

• (C
x̂i , rx̂i) = Commit [x̂i]

• a proof ⇧i, which is a zero-knowledge proof of the following NP statement

(clauses in the statement marked ⇤ are only included if the decision maker’s

policy is randomized and TRANDOM has happened):

⇧i : randi = V⇢(x̂ikbi)
AND

Given (C
ŷ

, C⇢, Cx̂i , Cẑi), the prover A knows a witness

w = (ŷ, x̂i, ẑi, rx̂i , rẑi , ⇢) such that

ẑi = f (x̂i, ŷ, R) and

(C
ŷ

, r
ŷ

) = Commit [ŷ] , (C
x̂i , rx̂i) = Commit [x̂i] ,

(C
ẑi , rẑi) = Commit [ẑi] , (C⇢, r⇢) = Commit [⇢] ,

(CR, rR) = Commit [R] ,⇤ and Verify [⇡randi ] = 1.⇤
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For each value computed except randi (which A keeps secret), A authenticates the

value and records it in the log:

TDECISION : C
ẑi , Cx̂i ,⇧i

Also during this stage, A sends (ẑi, rẑi , rx̂i) to Si over a confidential authenticated

channel. This allows Si to verify the commitments to ẑi and x̂i.

TOVERSIGHT (Optional)

As an optional final step, the oversight body O can demand that the authority A

send him the secret policy value ŷ and the key r
ŷ

necessary to verify A’s commitment

C
ŷ

to that value, previously published in the log. However, O may not demand the

secret key ⇢ or the commitment keys r⇢, rx̂i , rẑi . ⇢ serves to blind the actual stream

of pseudorandom bits used by A in its decision and therefore protects the privacy of

x̂i and ẑi, the private data of each Si.

During this epoch, a decision subject Si who has discovered either that A’s com-

mitments C
ẑi , Cx̂i were improper or that A used an incorrect x̂i for her decision may

bring evidence of this fact to O, who can then punish A if A did indeed violate the

protocol.

Also during this epoch, and possibly in response to such a challenge, O may elect

to query the policy oracle, O(f, ŷ), to learn whether A’s policy is acceptable. If A’s

policy is unacceptable or if any of A’s commitments or proofs do not verify, O will

punish A for its misbehavior.

5.2.2 Analysis

This protocol satisfies the above-described security model.

After the protocol, the actors learn the following:
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Si: Each subject Si learns ẑi, the fact that ẑi = f (x̂i, ŷ, R), that randi was chosen

uniformly and randomly beyond the control of any party, and that valid com-

mitments to C
ẑi , Cx̂i , Cŷ

, and C⇢ have been logged. Si does not, however, learn

the secret portion of the policy ŷ.

O: The overseer learns the fact that ẑi = f (x̂i, ŷ, R) for every Si 2 {S1 . . . SN}, and
that each randi was chosen uniformly and randomly beyond the control of any

party. O has the power to demand knowledge of the secret portion of the policy,

ŷ, which is common to all decisions. O also has the power to demand that A

show that its commitment to this value was proper. O does not learn any ẑi

or x̂i, however, beyond what he can infer about them from the the information

already described in combination with any information he can gain outside the

protocol.

After the decision has been announced to each Si, the agency A is bound to a

specific choice of decision policy f(·, ŷ, ·) as well as to a full explanation for each

decision ẑi. The secret portion of the policy ŷ can be reviewed separately by an

oversight body O, which can be certain after the fact that the specific policy reviewed

was in fact the one that was used for each decision. The oversight body can make

this determination even without seeing subject-specific input that would compromise

the privacy of the decision subjects.

Specifically, the oversight body can determine that A’s overall policy f(·, ŷ, ·) is

proper and was used in determining each result ẑi without referencing the correspond-

ing subject-specific input x̂i by verifying the published zero-knowledge proof ⇧i, which

ensures that the agency knows values that comport with the published commitments

to each x̂i and to the corresponding ẑi. The function f , which is used to generate ẑi

from ŷ and each x̂i, is public, so O can be sure it is not improper in some way (for

example, f might contain a switch statement over the surname of a specific decision

subject Sj which causes the function to misbehave only on Sj’s input; because the

166



function is public, O can inspect it to rule out this kind of bad behavior). To the

extent misbehavior in f exists and is triggered by improper values in A’s secret input

ŷ, O has the power to compel A to reveal ŷ and r
ŷ

. O can then check that ŷ matches

the previously published C
ŷ

, thereby tying the revealed value to the proof ⇧j that

was also provided to Sj. In this way, O can review all aspects of A’s decision process

except the confidential information in x̂i and ẑi. From this review, O can determine

whether A is using an approved policy for each decision (because O can inspect the

secret portion of the policy ŷ directly) and that this policy was actually the one used

to produce each result ẑi (because this fact is entailed by the proof ⇧i). Further, O

can elect to consult the policy oracle O(f, ŷ) to learn whether A’s policy is accept-

able. If any decision is improper or a policy is unacceptable, O has the cryptographic

evidence necessary to justify punishing A.

Simultaneously, each data subject Si receives its result ẑi and r
ẑi and so can verify

C
ẑi . Having done this, each Si can verify ⇧i and learn that A is committed to a full

explanation for its decision ẑi. Even though she cannot see the full policy, she knows

that O can and trusts that O will object and punish A if the policy is in any way

lacking. Further, because each Si knows its correct x̂i and has learned r
x̂i , she can

check the veracity of C
x̂i and thus knows whether the proper value of x̂i was used to

produce ẑi from her verification of ⇧i. If the value of x̂i used is not the correct x̂i

for Si, Si can demonstrate to O that A has misbehaved by revealing all or part of the

correct x̂i, which is enough to demonstrate that the incorrect value was used in the

decision. O can then punish A for behaving improperly or rule that the challenge is

spurious.

Observe that even though Si reveals her subject-specific input in this case, her re-

sult ẑi is not revealed to the extent that f depends on the random seed value provided

to it, randi = V⇢(x̂ikbi). Because O is never given access to ⇢, the randomization of

A’s policy e↵ectively blinds the computation of the result, to the extent O cannot
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predict it from the other inputs. It is an interesting deployment consideration the

extent to which each subject’s individual data and result should or must be available

to the overseer.

A small but manageable complication to this analysis occurs when A’s policy

requires some random coins in order to be computed. A malicious decision maker

who knows a subject’s inputs can bias results by selecting the random choices it

desires. This is true even if we replace the use of randomness inside the policy with

randomness sourced from a pseudorandom generator, as a malicious decision maker

can still influence the choice of seed. Because these choices will be indistinguishable

from some actually random choice, this defeats all accountability provided by our

protocol! In order to provide A with verifiable random bits, we assumed that those bits

came from a trusted beacon or fair randomness protocol. We additionally stipulated

that the trusted bits had to be used to generate a seed that was cryptographically

bound to the subject under consideration Si in a verifiable way. We accomplished

this by using the concatenation of these strings as an argument to a verifiable random

function V⇢, keyed by a secret key chosen by the decision maker, ⇢. Because A commits

long in advance to his secret key ⇢, the random coins used for any given subject Si are

unpredictable to him, hence he cannot use them to bias the decision. Without the

assumption that the beacon value bi is assigned to a specific subject Si, our protocol

would be subject to a kind of randomness shopping attack, in which a malicious

decision maker uses random values from a trusted source such as a beacon, but uses

discretion to assign those values to the individual Si so as to bias particular outcomes

ẑi.

This assumption can be ameliorated in several ways. We could, for example,

structure the trusted beacon so that it does not only produce random values bi, but

indexed tuples (i, bi) and demand that the decision maker commit in TCOMMIT to a

mapping i 7! Si. Alternatively, in situations where at least some portion of x̂i cannot
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be predicted by A in advance and the min entropy of x̂i is high enough, we can simply

eliminate the assumption of a trusted beacon and compute (randi, ⇡randi) = V⇢(x̂i).

This technique applies to our tax audit example, where even though the tax authority

likely has a strong prior for all of each Si’s filing information, tax forms could easily

include an extra field asking the filer for a random nonce or pin code. Indeed, forms

in the United States already ask for a (low entropy) pin code to authenticate the filer

for customer service. However, this technique would not apply well when the decision

subjects do not have input or visibility into their data, such as in a consumer scoring

application. We consider the proper choice of how to handle randomized decision

policies an interesting deployment concern for our protocol.

5.2.3 Extensions

Ensuring properties of secret policies

Suppose a decision authority wishes to demonstrate some property P of its policy

above and beyond the policy compliance oversight provided by the oversight body

publicly. For example, an authority might wish to demonstrate that a scoring algo-

rithm used to determine credit eligibility or terms does not use race or gender as an

input, even in the secret part of the decision policy. Let CP : F ! (Y ! {1,?}) be
a predicate checking function for P. That is, CP(f)(ŷ) = 1 if and only if A’s policy

satisfies the predicate P. Clearly, if CP(f) is independent of ŷ, A can demonstrate

publicly whether his policy satisfies P. If, however, the property P cannot be deter-

mined from f alone, each Si will need some additional information to which it does

not ordinarily have access in order to determine if P holds.

Fortunately, a simple extension to the above protocol can provide su�cient in-

formation to assure all parties that P holds even when it depends on the secret

portion of A’s policy: we simply compute the partial application g : Y �! {0, 1} as
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g(y) = CP(f) and then augment the statement proved by the zero-knowledge proof

to include the condition g(ŷ) = 1.

Using this extension, we can augment the above protocol to assure each decision

subject directly of the truth of any NP-computable predicate over the agency’s policy,

regardless of whether that predicate depends on the secret portion of the policy.

Minimum disclosure escalations

Above, we stated that, in order to demonstrate that an incorrect value of the subject-

specific input was used for her case, each decision subject Sj for whom A used an

incorrect subject-specific input x̂0j to obtain a result ẑj would need to reveal all or

part of x̂j to O in order to demonstrate this fact. Here, we explain the escalation

process more carefully. Consistent with our security goal of minimizing the disclosure

of subject data to the oversight body, Sj must, at minimum, disclose enough for the

overseer to establish two facts:

(i.) That x̂j is the correct subject input for Sj.

(ii.) That some value x̂0j 6= x̂j was the one used in the decision ẑj.

To establish the first of these, Sj must necessarily disclose x̂j so that the overseer can

determine that the value is correct. But it is not, in general, necessary for the overseer

to see all of x̂j to learn this: it is enough for Sj to be satisfied that the value used for

ẑj is acceptable to her and to escalate if it is not. Therefore, a challenge really only

requires the unblinding of information su�cient to establish only that some portion

of the x̂j is incorrect. By carefully structuring the commitment the authority uses

to x̂j in the accountability protocol, we can make it possible for Sj to unblind the

minimum portion of the correct value to establish this fact. In particular, if x̂j is a

vector and the authority commits to the dimensions of that vector using a Merkle

tree [262], it is possible for Sj to prove that a value x̂0j 6= x̂j was used by the agency

by showing only a single incorrect dimension to the overseer.
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5.3 Realizing Accountable Algorithms with Con-

crete Primitives

We realize the protocol of Section 5.2 using the following concrete primitives developed

in Chapter 3: (i.) Zero-Knowledge Succinct Non-interactive Arguments of Knowl-

edge (zk-SNARKs) (Section 3.3.2); (ii.) random oracle commitments (Section 3.3.1),

realized e�ciently for zk-SNARKs using a collision-resistant hash function due to

Goldreich, Goldwasser, and Halevi (GGH) that relies on the hardness of certain lat-

tice problems (Section 3.3.1); (iii.) if the decision policy is randomized, a verifiable

unpredictable function due to Dodis and Yampolskiy which, using a procedure de-

scribed below, allows the verifiable extraction of a seed for a pseudorandom generator

(Section 3.3.3); and (iv.) also if the decision policy is randomized, as a pseudoran-

dom generator (also Section 3.3.3), we use Keccak, the algorithm underlying the new

SHA3 standard, in its SHAKE128 configuration.

Because the preprocessing zk-SNARK system we make use of to realize this pro-

tocol is malleable under certain conditions (in the sense that an adversary can tamper

with a valid proof to make a valid proof of a di↵erent, related statement), authentica-

tion of proofs entered into the log is always necessary in order to attribute statements

to the agency A. We achieve such authentication using RSA signatures in the stan-

dard way, using SHA-256 to prevent the signatures themselves from being mauled, as

described in Chapter 3, Section 3.1.1.

We remark that we have specified the use of Dodis and Yampolskiy’s verifiable

unpredictable function rather than a true verifiable random function. This is because

their VRF requires the computation of a pairing both to compute the function and

to verify the proof it generates. Here, we argue that the VUF is su�cient for our

purposes. First, observe that the output of the VUF is uniformly distributed over its

range, namely all of Zp. However, represented as bit strings, these values show a bias;
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namely, their high-order bits are not pseudorandom, as small elements of the field do

not require the highest-order bits to represent and therefore bias these bits towards

0. As long as the space of field elements is large enough, however, a uniform element

will require approximately p work to rediscover once it is fixed. Even an adversary

who only seeks a collision will still require approximately
p
p work. Because we are

absorbing the output of the VUF into a sponge function, namely SHAKE128, all of

this entropy is available to us for the purpose of quantifying the e↵ort required to

reverse engineer the state of the sponge. Since we operate in the group over which

the SNARK QAP operates, which is 128 bits in size, we obtain the desired 128-bit

security level. To be conservative and achieve the desired security level also against

collisions, we can execute the VUF at two points, yielding two pseudorandom field

elements, and absorb both into the sponge. In fact, our implementation takes this

conservative approach.

An alternative argument for transforming the bits of the VUF to true pseudo-

random bits comes from a standard randomness extraction technique. Observe that,

while the high-order bits of the VUF are biased, the low order bits are not. Indeed,

let n 2 N be such that 2n < p. We compute the distance between the uniform distri-

bution on {0, 1}n and the distribution induced by taking the low-order n bits of the

VUF output. This distance is naturally bounded by 2n/p. To see this, consider that

if p were a perfect multiple of 2n, then no bias would take place. However, since it

is not, some nontrivial values of the form x mod 2n occur slightly more often than

they do in the uniform distribution. So at most, the statistical distance will grow by

2n/p. Since our p ⇠ 2128, we can achieve very close to 128-bit security by keeping all

but a constant number of low-order bits of the VUF output.4 Again, we can amplify

our work factor by evaluating the VUF at multiple points.

4We credit this argument to our collaborator from Chapter 4, David Wu, from personal commu-
nication.
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Chapter 6

Example Accountable Algorithms

In this chapter, we describe our implementation of the protocol of Chapter 5 (Sec-

tion 6.1) and describe the generation of constraint systems/circuits for functions nec-

essary to use zk-SNARKs in that protocol (Section 6.1.1). We also describe a general

evaluation of our implementation (Section 6.2). We finish by describing several con-

crete example circuits we have implemented and evaluated, and our early experiences

trying to apply our protocol to real-world scenarios (Section 6.3).

6.1 Implementation

We implement a realization of the protocol of Chapter 5, Section 5.2 using the con-

crete primitives developed in Chapter 3 and mentioned in Chapter 5, Section 5.3.

Our implementation relies on libsnark, the zk-SNARK library of Ben Sasson et

al. [42] for computing and verifying proofs.1 We found generating circuit represen-

tations of functions using the “gadget library” of libsnark somewhat challenging,

however, so we developed our own suite of tools in the Go programming language for

generating constraint systems based on our own, modified gadget abstraction. This

1libsnark is a library under active development, especially as it becomes a part of more and
more projects both inside and outside the research community. The latest version may be found at
the library’s website, https://github.com/scipr-lab/libsnark.
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system, which constitutes approximately 1000 lines of code, is described more fully

in Section 6.1.1.

To integrate constraint systems generated by our tools with libsnark, we de-

veloped a small driver program of about 200 lines of C++ code, which invokes the

correct routines within libsnark to implement the core cryptographic algorithms of

KeyGen, Compute, and Verify. We use other scripts surrounding these to represent the

other activities in TCOMMIT, TRANDOM, and TDECISION—for example, to achieve commit-

ments using the knapsack-based hash function of Goldreich, Goldwasser, and Halevi

(GGH) [169], we wrote a separate integration tool that leverages the implementation

of this construction within libsnark of approximately 350 of C++. For test pur-

poses, we simply used the file system of our test machine to represent the log which is

visible to all parties. In practice, one would instead use some kind of tamper evident

log, either held by an auditor with updates published on a regular schedule, realizable

e�ciently using the scheme of Crosby and Wallach [109]; or implemented on top of a

tamper-resistant system such as Bitcoin, as suggested by Clark and Essex [98].

To properly implement TRANDOM, and to generate random bits for use in commit-

ments, we needed a pseudorandom generator. We realize this requirement using the

cryptographic sponge function Keccak, now standardized as SHA-3 [45], for which

there is an experimental package.2 Similarly, we use RSA signatures implemented by

the Go standard library, which implements the RSA de-facto standard of RSASSA-

PSS,3 which in turn implements the classic construction of Bellare and Rogaway [36].

We also implemented the verifiable random function of Dodis and Yampolskiy [127]

in Go, borrowing group parameters from libsnark for ease of integration and validity

of the resulting proofs of randomness.

2This package is available at https://golang.org/x/crypto/sha3.
3Though promulgated by RSA Security Inc. [216], this standard was later adopted by the IETF

as RFC 3447.
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Consistent with our goal of a 128-bit security level across the board, we use

libsnark with its default Barreto-Naehrig curve, the SHAKE128 configuration of Kec-

cak, and 3072-bit RSA keys for signatures.4 For commitments, we use the knapsack-

based hash function of Goldreich, Goldwasser, and Halevi as implemented inside

libsnark. To achieve 128-bit security, we add 256 bits of randomness to our input,

drawn from /dev/urandom/ and mixed using the SHA-512 implementation from Po-

larSSL, for which we had existing code in our implementation of the protocol from

Chapter 4.

6.1.1 Constraint System Generation

To generate constraint systems, we elected to develop our own tools rather than use

either of the two “gadget libraries” that are part of libsnark. Both components

are meant to allow the bottom-up manual coding of circuits from simple components

which can then be easily extracted into constraint systems in the data structures

needed for key and proof generation. In practice, however, the libsnark notion of a

gadget is somewhat limiting. Primarily, this is because in a real-world scenario, the

code for a function must be available both to the key generator for generating the

evaluation and verification keys (EKF ,VKF ) and to the prover, who must compute

ẑi = f (x̂i, ŷ, R). However, because libsnark expresses circuits only as in-memory

C++ data structures, these must be regenerated by each party’s program. Evaluat-

ing the program in circuit form and extracting output is also somewhat unwieldy, as

libsnark’s tools for generating satisfying assignments for constraint systems gener-

ated by the gadget libraries are rather primitive. Instead, we built our own gadget

abstraction in the Go programming language.

4This is consistent with guidance from RSA Laboratories about key sizes: http://www.emc.com/
emc-plus/rsa-labs/standards-initiatives/key-size.htm. RSA maintains an active program
to track the e�ciency of widely known factoring algorithms and implementations against the work
factor required to break particular instances of the RSA problem.
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We view the function of a gadget as producing (i.) a constraint system suitable

for proof generation, and (ii.) a function that maps inputs supplied by the prover to

a satisfying assignment for the constraint system. Because of this, our gadgets di↵er

from those in libsnark in that they o↵er both a GenConstraints functionality that

outputs constraints suitable for use by the cryptographic components of libsnark

and a Codegen functionality that outputs Go source code for a function that inputs

to a higher-level description of a decision policy onto a satisfying assignment for

the constraint system output by GenConstraints. These functions may also supply

nondeterminisitic advice, since to compute a function the constraint system need

only verify its correctness. Often, a problem which is simple to verify in the R1CS

language used by libsnark is very expensive to compute directly as a circuit.5

All of this suggests to us that constraint programming is a ripe area for the devel-

opment of an optimizing compiler. While other work has produced “constraint system

compilers” [39,42,291], we remark that these programs have not, in general, been very

sophisticated and mostly try to find the smallest constraint system for individual lex-

ical elements, without any later optimization of the resulting constraint system or

attempts at designing a programming model amenable to whole-program optimiza-

tion. Later work by Costello et al. [104] reports large performance increases from

such techniques along with many cryptographic improvements. Such a programming

model approach is the focus of work by Stewart and Kroll on Sn̊arkel,6 which aims

to bring the research techniques of the programming languages community to bear

on these problems. In particular, Sn̊arkel re-uses our libsnark integration tool to

integrate constraint systems generated by our compiler. We use the Sn̊arkel compiler

to generate constraint systems for the examples described in Section 6.3.

5An easy example of this is division. In R1CS, a division circuit computing the inverse of a field
element bit-wise is a very large object that can be verified in a single constraint. So computing that
a/b = c may cost many hundreds of constraints when the two constraints b ⇤ c = a and b ⇤ x = 1,
where x and c are supplied by the function produced by Codegen, will express the same computation.

6https://github.com/gstew5/snarkl
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6.2 Evaluation

The performance of libsnark is already well studied and understood by its au-

thors [39, 42]. Our implementation can be understood most simply as taking the

circuit Cf for a function f which would be used with libsnark and adding some

extra machinery by embedding it as a sub-circuit in a separate accountability circuit,

CAA,f , which augments Cf to include verification of the four commitments and, if

necessary, the verifiable random function and associated fifth commitment used by

the protocol of Chapter 5, Section 5.3.7 For this reason, the primary goal of our

benchmarking is to measure the overhead of CAA,f with respect to Cf . We remark

that this overhead is constant, since the number and complexity of the commitments

in our protocol does not depend on the complexity of f or its circuit representation.

Our accountability circuit CAA,f implementation requires verifying either three

commitments (when no randomness is required) or four (when it is). Assuming we

can pack committed values into single field elements, we can execute a commitment

at 128-bit security using a single constraint.8 This includes the addition of a random

blinding value. If we need to pack a string of n bits into a field element, we can do this

in n constraints. Thus, our accountability subcircuit requires at most 4n additional

constraints, where n � max(|x̂i|, |ŷ|, |⇢|, |ẑi|). We can approximate this as at most

1024 extra constraints. Our measurements confirm the published performance of

libsnarkof approximately 0.21ms of key generation time per constraint, 0.21ms of

proving time per constraint, and therefore our subcircuit an additional 0.215 seconds

of key generation and proving time (±0.1%, n = 1000).

We stress that our performance numbers are preliminary and based on limited

experimentation. Further careful experiments are necessary to provide robust eval-

7Recall that verification of the VRF and a fifth commitment to pseudorandom bits required by
f are only necessary if f is randomized.

8In specific, the knapsack-based hash of Goldreich, Goldwasser, and Halevi scales (very roughly)
in security as d|F

p

|, where d is the dimension of the fixed public matrix over F
p

.
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uations of performance using better-understood cryptographic primitives (such as

widely used hash functions to replace our GGH hash function9

6.3 Examples

Here, we consider the space of applications for accountable algorithms. From a prac-

tical perspective, zk-SNARKs require significant computational resources and time

for proving, even if they are extremely e�cient to verify. Therefore, they are most

applicable in situations where intense proving resources are not an issue or where

the function to which they are to be applied can be represented as circuit or con-

straint system that is not too large. Such applications will, in general, be situations

where proofs are generated infrequently and verified frequently, where few proofs are

required, or where the decision maker involved can invest significant computational

resources.10

This section details several concrete examples of classes of algorithm for which

these techniques could be practical.

6.3.1 Linear Classification: Scoring and Risk Assessment

Very simple linear models, with some extra techniques layered on top, have been very

successful in terms of practical use in classification tasks. This stems in part from their

ease of training, but also from the fact that they produce robust and usable results. In

this section, we consider the implementation of some core classification techniques as

constraint systems usable within zk-SNARKs. Such systems are especially common

9While the GGH hash function su�ces for our purposes, selecting parameters for it to meet a
particular work factor requirement requires significant guesswork inappropriate for real deployment.

10In our tax auditing example from Chapter 1, let us assume that the tax authority would need to
compute proofs for a nation-sized group of taxpayers once per year. For convenience, we will assume
this means 500,000,000 proofs per year. Assuming standard 42-unit datacenter racks, with 40 units
utilized per rack and 16 cores per unit, such an agency would need roughly one rack of servers per
40 seconds of proving time.
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in systems that assign consumer scores such as credit and insurance underwriting

scores, and in systems which assign risk for audit or fraud management purposes.

In general, a linear classifier takes the form:

y = f(~w · ~x) = f(
X

j

wjxj)

f is often a simple step function that outputs 1 if its argument is above a threshold and

0 otherwise. However, f may be a more complex function that gives the probability

that the observation ~x belongs to a certain class, or outputs a classification based

on pseudorandom bits biased according to some distribution determined as a linear

function of ~x. The coe�cients of the linear classifier can come from any source, for

example they can result from training a linear machine learning model such as a linear

Support Vector Machine (SVM), or be updated in an online way as each new test

input is seen.

We observe that there are many reasons why a decision maker may want to protect

a policy based on a linear classifier using our techniques: (i.) the decision maker may

not wish to disclose which particular algorithm or model it uses to make classifications;

(ii.) even if the decision maker is willing to disclose that they use a particular type

of model, they may wish to avoid disclosing the trained model weights to protect

their intellectual property and to prevent model inversion attacks that would disclose

private facts about the underlying training data; (iii.) the decision maker may wish to

prevent others with reasonable guesses as to the inputs of a particular subject from

learning that subject’s classification. (iv.) the decision maker may wish to incorporate

random dimensions in its linear policy and may wish for the entire execution to be

accountable.

Below, we consider a few concrete linear models and their implementations as

circuits suitable for ingestion by our cryptographic tools.
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Simple Perceptron

Possibly the simplest example of a linear classifier is the simple perceptron [267], a

two-class threshold linear classifier defined as follows on k-dimensional input ~x and

trained weights ~w.

f(x) =

8
><

>:

1 if ~w · ~x+ b > 0

0 otherwise

Though perceptrons are simple individually, they may be combined into layered net-

works to build advanced classifiers. Perceptrons form the basis for many modern

classification techniques.

In an accountable perceptron, the secret policy ŷ is a k-vector of integers, each

subject’s private data x̂i is a k-vector of booleans, and

f(ŷ, x̂i) =

 
k�1X

j=0

xijyj + b � 0

!

This f is very cheap to represent in an R1CS constraint system. The summation,

including the bias term, requires a single constraint, and the comparison to zero

requires an additional two constraints. Thus, each perceptron only requires a total

of three constraints to represent in R1CS. No randomness is necessary to evaluate

this function. Accountable linear models su↵er a large overhead because the base

models are very compactly representable in R1CS. Indeed, the 1024 constraints of

the accountability subcircuit represent a 342⇥ overhead over the three constraints

native to a simple linear model. While this overhead is very large, the small absolute

time required for the overall circuit mitigates its impact.

We observe that this practice only accounts for the execution of the model and

not its training. While model training presents an interesting accountability issue,

we leave that important question open in this work, remarking only that our model

allows a decision maker to use any policy it believes will not be ruled unacceptable
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on review by the overseer and therefore exactly where any particular secret weight

vector originates is beyond the scope of our analysis in this dissertation.

Support Vector Machine

A slightly more complicated linear classifier is a k-dimensional support vector ma-

chine (SVM). Originally introduced by Vapnik and Cervonenkis as a special class of

perceptron [356], SVMs have become a powerful technique in the machine learning

toolbox. SVMs work in the same basic way as perceptrons, but di↵er in their train-

ing approach: an SVM model is the solution to an optimization problem that finds

the maximum margin hyperplane which separates classes of points (that is, the hy-

perplane with the largest distance from the nearest training vector; maximizing the

margin lowers the generalization error of the classifier, improving its performance on

yet-unseen data). Data are mapped into a much higher dimensional space and the

perceptron dot product is computed e�ciently using kernels, or functions that com-

pute a set of dot products with support vectors, for which dot products with vectors

in the original space are constant. This “kernel trick” allows e�cient linear models

with many more dimensions than can be achieved with traditional perceptrons.

The model is thus defined (in its dual form) by maximizing the Lagrangian:

L̃(↵) =
nX

i=1

↵i � 1

2

X

i,j

↵i↵jyiyjk(xi, xj)

subject to ↵i � 0 and the constraint that
Pn

i=1 ↵iyi = 0, where the ↵i are scalar

Lagrange multipliers, the yi are the dimensions of free vector variables, and the xi

are the training data vectors. k(x, x0) is the kernel function described above. Many

kernels are possible—one simple kernel is defined by k(xi, xj) = xi · xj, while another

more complicated kernel is considered below.
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Once the model is trained, an SVM can be represented compactly for evaluation by

an arithmetic circuit. SVM evaluation di↵ers from perceptron evaluation only by the

additional evaluation of the kernel basis function. The simple inner-product kernel

described here requires only a single constraint per classification, leading to a model

that requires a total of four constraints per test vector, regardless of dimension, and

no randomization. The circuit for such a model is heavily dominated by the cost of the

commitment verifications in the accountability subcircuit, which is 1024 constraints.

This again represents a large overhead of approximately 257⇥, also mitigated by the

small absolute proving time required for key generation and proving.

RBF-SVM

A more complex kernel-based model is the Radial Basis Function Support Vector

Machine (RBF-SVM). A classifier based on such a model returns true for a point xi

if the function

f(xi) = b+
kX

j=0

↵je
��kxj�xik2

is non-negative, where b, �, the ↵j’s and the xj’s are parameters of the model. This

function computes on real numbers, which we can approximate with fixed-point ra-

tionals. The most expensive part of the function evaluation is computing the expo-

nential, which can be approximated as follows:

e(z) ⇡ (1 +
z

n
)n = n�n(n+ z)n

for suitably large n. In practice, we can pick n to be 16, and compute the sixteenth

power by squaring three times. f can be computed with six constraints per term of

the summation: one constraint to compute the magnitude-squared in the exponent,

one constraint to multiply by ��, three constraints to approximate the exponential,

and one to multiply by ↵i. Additions require no extra constraints, as they can be
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made part of the structure of existing R1CS constraints for free. We therefore require

1024 + 6k constraints, where k is the number of support vectors in the kernel. The

correct choice of k will depend on the specific model in use. We can guess, however,

that k is never more than a few hundred, even in complex models. Therefore, we can

conclude that the overall execution time for even a large model will only be a few

seconds.

As above, the complexity of the constraint system is dominated by the commit-

ment verifications which require approximately 1024 constraints in total, an overhead

of (1024 + 6k)/6k constraints over the total native constraints of the function. This

will, in a typical application, be lower than our simpler classifiers, ranging from 1�2⇥
to as little as 15% based on reasonable values of k.

6.3.2 Fair Classification

Chapter 2, Section 2.1.4 describes the growing literature on machine learning classi-

fiers which satisfy formal guarantees of fairness either for individuals or for groups. It

is natural for us to ask whether such a fairness property can be demonstrated in our

system either to the public or to an overseer. Certainly, an overseer who can review

the entire decision policy will always be able to determine that such an algorithm

was used—our aim is to establish this property without the need for an expensive

oversight process. This section sketches the implementation of a very simple fair clas-

sifier. Implementation of a more robust fair classifier and testing in the setting of a

real classification task are beyond our scope here.

We elect to follow the “fairness through awareness” approach of Dwork et al. [130]

and Hardt [202]. This approach requires us to prove that a classifier satisfies the

Lipschitz condition

D(Mx,My)  d(x, y) 8x, y 2 V
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That is, the statistical distanceD between model outputsMx andMy for test vectors

x, y must be bounded by a suitable distance metric d(x, y).

Intuitively, this sort of invariant di↵ers from the types of invariants we have con-

templated as extensions to the protocol in Chapter 5, as it is a property not of the

computation we wish to hold accountable, but rather of the program and all possi-

ble data. That is, the property we wish to demonstrate is quantified over the entire

model domain V . Näıvely, we could capture such a quantified invariant through a

large circuit that considers all possible data points. However, as we will show in this

section, we can capture even this type of invariant with an e�cient circuit.

We define a simple classifier that is easily proved fair under the Dwork et al.

condition but which is likely low in utility.11 Exploration of classifier utility vs.

complexity of arithmetic circuit implementations remains an interesting open problem

beyond the scope of this work. Specifically, define a model M : [0, 1] �! {0, 1} such

that Pr[M(x) = 1] = x. That is, the classifier is defined by the random variable

M(x) = {1 : x, 0 : 1 � x}. Then the total variational distance between classifiers

M(x) and M(y) is simply:

DTV (M(x),M(y)) =
1

2
(|x� y|+ |(1� x)� (1� y)|) = 1

2
(|x� y|+ |y � x|) = d(x, y)

Here, DTV is the total variational distance between two distributions and d is the

Euclidean norm for real numbers. This proves the fairness criterion for all x, y 2 [0, 1].

This classifier can be implemented in a small arithmetic circuit by a technique

of multiplying the input by a random number and checking a threshold. We can

express this very compactly even if we represent the input and the random numbers

in IEEE 794 floating point. Such a representation requires, at the lowest precision, 16

bits per value. We require a single constraint per bit for multiplication and another

two constraints per bit for thresholding, using a waterfall approach to designing the

11We owe a debt of gratitude to Sean Gerrish for suggesting the outline of this classifier.
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circuit. This yields 48 constraints in total; again, the cost of accountable execution

is heavily dominated by the cryptographic verification.

6.3.3 Lottery: Diversity Visa Lottery

Each year, the U.S. State Department operates its Electronic Diversity Visa Lot-

tery (DVL) program [353], a program under which non-U.S. residents from countries

deemed to have low rates of immigration to the United States may apply for one of

55,000 visas made available annually.

The DVL process operates as follows. Would-be immigrants can apply to be

entered in the lottery. Applicants are grouped according to their country of birth.

Within each country group, applicants are put into a random rank order list (the lot-

tery step). A (public) number of applicants to accept from each country is calculated,

using a formula based on the number of immigrants to the U.S. in recent years from

each specific country and region. The calculated number of applicants are selected

from the top of each country’s rank-ordered list. These “winners” are screened for

eligibility to enter the U.S., and if they are eligible they receive visas.

Questions have been raised about the correctness and accountability of this pro-

cess. Would-be immigrants sometimes question whether the process is truly random

or, as some suspect, is manipulated in favor of individuals or groups favored by the

U.S. government. This suspicion, in turn, may subject DVL winners to reprisals, on

the theory that winning the DVL lottery is evidence of having collaborated secretly

with U.S. agencies or interests.

There have also been undeniable failures in carrying out the DVL process. For

example, the 2012 DVL lottery initially reported incorrect results, due to program-

ming errors coupled with lax management [159]. In particular, a programming error

in the selection process caused the results to be heavily biased towards people who

submitted applications in the first two days of the application period.
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An accountable implementation of the DVL lottery could address both issues, by

demonstrating that there is no favoritism in the process, and by making it easy for

outsiders to check that the process was executed correctly. Further, the cryptographic

record generated by the accountable algorithms protocol can help the system’s im-

plementers and operators be certain that their policy is being executed as intended,

by ensuring that su�cient evidence exists to review every individual decision as well

as the set of all decisions.

The key issue is to build a fair k-of-n selection, which is equivalent in complexity

to sorting the inputs. Designing small circuits for sorting is a well-studied problem

both in theory and in practice. For brevity, we do not summarize any constructions

here. However, best-of-breed constructions require O(k log n) gates. For typical val-

ues of 50, 000 selected visa applicants out of approximately 10 million entrants, this

yields approximately 825, 000 gates, which require approximately 30 minutes of key

generation time and 30 minutes of proving time. Here, the accountability circuit

represents an overhead of only 0.12%.
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Chapter 7

Conclusion: Designing Computer

Systems for Oversight

We conclude this dissertation by remarking on how the tools it presents can be de-

ployed in a real-world context to design automated systems that are amenable to

oversight and accountability. Such accountability will only become more important

as the decisions being automated become both more consequential and more quotid-

ian. One risk, identified by many authors, is that we accept computerized decision

making as inherently opaque, giving up on traditional structures for governance be-

cause such systems are too complicated and do not lend themselves to the sort of

comprehensibility that a↵ords good governance. We believe the tools introduced in

this dissertation provide an e↵ective counterpoint to such disconsolation.

In particular, we argue that our approach which facilitates oversight maps more

closely onto real-world accountability requirements than previous works, which have

aimed to ensure well defined properties cryptographically but have failed to find real-

world adoption. We speculate on this issue in particular, since systems for secure

computation have typically been overshadowed by traditional human-driven gover-
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nance processes in real deployments, often creating a situation where a system does

not meet its security goals as deployed.

Some material in this chapter is drawn from a paper workshopped at the 2015 Pri-

vacy Law Scholars Conference which is joint work with Joanna Huey, Solon Barocas,

Edward W. Felten, Joel R. Reidenberg, David G. Robinson, and Harlan Yu [233].

In order for a human process or a traditional bureaucracy to function in an ac-

countable way, accountability must be part of the system’s design from the start.

This chapter argues that the same is true for computer systems that fulfill important

functions. Designers of such systems—and the non-technical stakeholders who often

oversee or control system design—must begin with oversight and accountability in

mind. Often, computer system designers and detractors of using automated systems

to accomplish some task forget that human-driven processes for the same task would

also require significant care in order to facilitate oversight and accountability.

Given the ever-widening reach of computer-made decisions, it is essential for com-

puter scientists to know which tools need to be developed and for policymakers to

know what technologies are already available. This includes advocating the technolo-

gies developed in this dissertation. We o↵er recommendations for bridging the gap

between technologists’ desire for specification and the policy process’s need for ambi-

guity. As a first step, we urge policymakers to recognize that accountability is feasible

even when an algorithm must be kept secret. We also argue that the ambiguities,

contradictions, and uncertainties of the policy process need not discourage computer

scientists from engaging constructively in it.
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7.1 A Remark on Cryptographic Solutions to

Real-World Problems

Many cryptographic solutions to real world problems, including to problems of ac-

countability, have been proposed and made the subject of the entire careers of re-

searchers, only to never see any real-world deployment. In this section, we devote

some thought to why this general phenomenon exists and our views on why we hope

our approach will avoid its pitfalls.

Since the late 1980s, a group of activists referring to themselves as cypherpunks

advocated the use of strong cryptography to bring about social and political change.

They believed cryptography could disintermediate government processes by arbitrat-

ing contracts, handling anonymous payments, and providing robust privacy protec-

tions while disclosing precisely the information needed in any interaction [210]. A

fairly complete vision for a cryptographic society was proposed by Chaum [85]. The

cypherpunk movement’s rise and impact are chronicled by Levy [246].

Narayanan describes the failure of the cypherpunk dream of a cryptographic utopia

to come to fruition as a caution to present-day researchers against the technologi-

cally determinist belief that cryptography alone can solve di�cult real-world political

problems [281]. Narayanan argues that, while cryptography has been very useful in

applications that focus on security such as electronic commerce, its success is based

on the extent to which the incentives of the entity deploying the cryptography and the

parties to the transaction it protects align. In security applications, this alignment

is often perfect or nearly so. However, in applications for privacy or which have in

mind some kind of social change, these incentives can often be in tension. Specifi-

cally, Narayanan argues that the deployment of cryptographic technology reflects the

collective will of society.
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In a follow-up article, Naryanan addresses the di�culty encountered by proto-

cols from the research literature in seeing real-world deployment [282]. Specifically,

Narayanan identifies three major problems in deploying cryptography aimed to im-

prove privacy in a pragmatic (i.e., small, domain-specific) way: (i.) Lack of knowledge

among users about the value of cryptographic solutions for privacy, resulting in users

not being able to distinguish between functionally equivalent systems with radically

di↵erent information disclosure properties. (ii.) Human factors concerns, such as the

di�culty of key management and the gap between users’ observed willingness to dis-

close data vs. their informed choices about desired disclosures. Human factors also

include economic issues such as the business imperative for secondary data uses that

would be barred by e↵ective deployment of cryptographic privacy tools. (iii.) The lack

of accountability technologies to handle system requirements that do not comport well

with typical cryptographic models, such as the “breaking-the-glass” requirement that

medical personnel be able to override access control measures on patient records in

the event of an emergency. We largely concur with Narayanan’s analysis of why most

contemporary proposals for cryptographic systems do not make the jump from the

research literature to actual practice.

Our methods directly address many of Narayanan’s criticisms of cryptographic

solutions to social problems. Together with advocacy in communities of practitioners

and researchers and the further development of techniques identified in this disserta-

tion, we believe we can address all of the issues raised.

In specific, rather than providing a functionally equivalent replacement with no

visible benefit for end users, our protocols extend the functionality of current au-

diting and oversight processes, enabling them to function more e↵ectively than they

currently do while making their operation more transparent to the public. For this

reason, our approach does not su↵er the problem of many privacy-preserving systems

where non-privacy preserving versions seem equally acceptable. Indeed, Chapter 2,
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Section 2.2 describes the extensive scholarly literature documenting the insu�ciency

of current oversight for automated decision processes. Rather, we argue that incen-

tives are properly aligned in the scenarios we consider: a decision maker, its oversight

body, and the subjects of its decisions all have an interest in guaranteeing that it is

bound to a specific justification for each decision and that this justification complies

with social, political, and legal norms for the type of decision at hand.

A related risk from which our protocol does su↵er is the risk that the people

who could depend on the guarantees our protocol provides will not understand those

guarantees or why they can or should depend on them. Further, organizations and

government agencies which might deploy our techniques likely do not have the exper-

tise either to understand that such techniques are available (vs. simpler techniques

such as simply asserting the correctness of their process, perhaps supported by a pro-

gram of internal testing and review to increase the decision maker’s confidence in such

assertions). Nor do potential implementers likely have the skills in-house to develop

and deploy such solutions. We can solve this problem through a mix of education and

tool development: by teaching key parties, such as rights activists and policymakers,

what guarantees are possible, we can create demand for techniques such as ours; by

further developing the tools we introduce in this thesis, we can hope to make pro-

gramming for verified computation systems only marginally di↵erent from traditional

programming, making it possible for decision making agencies to meet that demand.

Of course, it would be excellent if we could call for a broad understanding of the

underlying cryptography and the use of cryptography to guarantee the invariants we

protect, but we see the path to understanding as shorter when it passes through

trusted experts, politically accepted oversight authorities, and socially accepted pro-

cesses such as public rule makings or adversarial court proceedings. Therefore, while

our protocol risks passing decision makers by due to its implementation complexity

and esoteric tool chest, we can combat this by educating important figures with the
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power to influence decision makers, their oversight bodies, or their constituencies.

We can equally combat the di�culty of implementing our techniques by distribut-

ing easy-to-use tools. We aim to do both, publishing these techniques in both the

computer science and public policy arenas and further developing our tools to enable

adoption.

Second, Narayanan suggests that human factors can hinder cryptographic deploy-

ment. We remark here that our techniques do not require any additional secrecy—all

new cryptographic keys required by general-purpose accountable algorithms are public

keys that must be published. Key generation poses a problem, but one which can be

surmounted by distributed key generation.1 Particular applications which have need

of randomized algorithms will require trustworthy sources of verifiable randomness,

but many of these applications (such as lotteries) already have this requirement.

Finally, Narayanan cites the inflexibility of cryptographic security models with

respect to the needs of real application scenarios as a cause for the non-deployability

of cryptographic solutions. But indeed, our goal is to bridge precisely this gap by

introducing extra flexibility into security models, arguing that oversight and after-the-

fact review must be considered, indeed enabled, in order for a protocol to truly provide

accountability. Narayanan specifically cites the lack of accountability technologies

as a cause of this inflexibility. We believe this dissertation speaks directly to this

concern, as well as the related concerns of several authors including Barocas [26],

Citron [94,97], Pasquale [294], and Nissenbaum [153,287].

1It is worth observing that distributed key generation for zk-SNARKs was developed in response
to the need to deploy keys for particular SNARK circuits used in an anonymous payments applica-
tion [265].
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7.2 Designing Computer Systems for Procedural

Regularity

The first step in any plan to govern an automated system should be to enable the

people overseeing it—whether they are government o�cials, corporate executives,

or members of the public—to know how the system makes decisions. A baseline

requirement in most contexts is procedural regularity: each participant will know

that the same procedure was applied to him and that the procedure was not created

in a way that targets individuals.

Specifically and as we have noted in earlier chapters, the tools introduced in this

dissertation—especially the protocol of Chapter 5—can be used to demonstrate that:

• The same policy was used to render each decision.

• The policy was fully specified (and this choice was recorded reliably) before

the participants were known, removing the ability to design the procedure to

disadvantage a particular individual.

• Each decision is reproducible from the specified decision policy and the inputs

for that decision.

• If a decision requires any randomly chosen inputs, those inputs are beyond the

control of any interested party.

A näıve solution to the problem of verifying procedural regularity is to demand

transparency of the source code, inputs and outputs for the relevant decisions: if all

of these elements are public, it seems easy to determine whether procedural regularity

was satisfied. Indeed, full or partial transparency can be a helpful tool for governance

in many cases, and transparency has often been suggested as a remedy to account-

ability issues for automated decision making systems. However, transparency alone
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is not su�cient to provide accountability in all cases, as we described in Chapter 2,

Section 2.2.3.

Another often suggested approach to the assurance of procedural regularity is to

combine transparency with auditing. Auditing treats a decision process as a black

box, of which one can see only the inputs and outputs, but not the inner workings. We

described calls for such an approach in Chapter 2, Sections 2.2.3 and 2.2.4. Computer

scientists, however, have shown that black-box evaluation of systems is the least

powerful of a set of available methods for understanding and verifying their behavior,

as we discuss in Chapter 2, Section 2.1.1.

Instead, our approach harnesses the power of computational methods and does not

take the design of the computer system as given. Nor do we give up on governance

when a component of that system or its design must remain secret. Specifically,

we use a suite of cryptographic tools, especially cryptographic commitments and

zero-knowledge proofs to guarantee the counterintuitive property that even when a

computer program or its input data are secret, the computer system satisfies the

requirements for procedural regularity; namely that the same algorithm was used

for each decision; that the program implementing that algorithm was determined and

recorded before inputs were known; and that outcomes are reproducible. Just because

a given policy is secret does not mean that nothing about that policy or the system

implementing it can be known.

7.3 Designing Computer Systems for Verification

of Desirable Properties

The word “discrimination” carries a very di↵erent meaning in engineering conver-

sations than it does in public policy. Among computer scientists, the word is a

value-neutral synonym for di↵erentiation or classification: a computer scientist might
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ask, for example, how often a facial recognition algorithm successfully discriminates

between human faces and inanimate objects. But for policymakers, “discrimination”

is most often a term of art for invidious, unacceptable distinctions among people—

distinctions that either are, or reasonably might be, morally or legally prohibited.

In the previous section, we described methods for ensuring that automated deci-

sions are reached in accordance with agreed rules, a goal we called procedural regu-

larity. But even when a rule is properly applied in each case, people may still wonder

whether the rule operates in aggregate to unfairly disadvantage certain groups—

whether, in the policy maker’s sense of the term, the rule is discriminatory.

In this section, we turn to the latter question. Beyond ensuring that the rules

are consistently applied, how and where can computer science help to illuminate and

address undesirable consequences that even a consistently applied rule may have for

certain groups? What makes a rule count as unacceptably discriminatory against

some person or group is a fundamental, and fundamentally contested, question. We

do not address that question here, much less claim to resolve it with computational

precision. Instead, we describe how an emerging body of computer science techniques

may be used to avoid outcomes that could be considered discriminatory.

Non-discrimination is a more complicated goal than procedural regularity, and

the solutions that currently exist to address it are less comprehensive. Technical

tools o↵er some ways to ameliorate these problems, but they generally require a well

defined notion of what sort of fairness they are supposed to be enforcing. Violations

of procedural regularity are clear-cut; violations of principles of fairness are often

murky and di�cult to define, and thus to demonstrate. However, we remark that

without a well established verification of procedural regularity, one can hardly hope

to verify any sort of more complex invariant about discrimination or another notion

of fairness.

195



In addition, the precision of computer code often brings into sharp focus the

tensions within current legal frameworks for anti-discrimination. Computers favor

hard and fast rules over the subjective standards endemic to our common law system

in general, and to civil rights law and policy in particular. This suggests that doctrinal

reform may be necessary before anti-discrimination law can be satisfactorily applied

in this area, as is suggested by Citron and Pasquale [97] and Barocas and Selbst [26].

In Chapter 2, Section 2.1.4, we gave an overview of the concept of fairness in computer

science and its many conceptions. More relevantly, though, we gave an overview of

the current state of technical tools that speak to anti-discrimination as it is conceived

in public policy.

As we demonstrated in Chapter 6, Section 6.3.2, our methods allow us to move

beyond procedural regularity and enforce invariants which reflect these state-of-the-

art techniques for making fair decisions. When an invariant can be specified ahead of

time, more e�cient tools can be brought to bear, as exemplified by the protocol and

system we present in Chapter 4. We cannot claim to have solved any major societal

problem in this dissertation, although we believe that our techniques could be de-

ployed to improve the state of practice in this area and will continue to advocate for

such advances. We remark that many important problems remain open, such as more

completely integrating our protocols with systems that provide well defined privacy

and fairness guarantees. Most importantly, however, computer scientists can work

to better sketch the form of fairness properties easily achievable in particular appli-

cations, developing robust and e�cient machine learning tools that complement our

techniques for governing individual decisions. Hardt provides an excellent exemplary

study in this area [202].

A significant concern about automated decision making is that it may simultane-

ously systematize and conceal discrimination. Because it can be di�cult to predict

the e↵ects of a rule in advance (especially for large, complicated rules or rules that
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are machine-derived from data), regulators and observers may be unable to tell that

a rule has discriminatory e↵ects built in. In addition, decisions made by computer

systems may enjoy an undeserved aura of fairness or objectivity. However, the design

and implementation of computer systems is vulnerable to a variety of problems that

can result in systematically faulty and biased determinations, as we summarized in

various sections of Chapter 2.

7.4 Fostering Collaboration between Computer

Science, Law, and Public Policy

Human-driven decision systems often feel intuitively more trustworthy because we

believe humans can exercise discretion when applying the rules, seeing when bending

or breaking a rule will improve outcomes and acting accordingly. To prevent abuse,

such systems often use some degree of oversight to enable discretion but detect and

ameliorate any harms it causes. Because it is di�cult to foresee all situations in which

a rule is applied in advance, such flexibility is often considered to be valuable when

evaluating the trustworthiness or accountability of some important process. After all,

if we could foresee every application of a rule, we could simply bake the “correct”

outcome into the rule itself!

Our methods address this gap directly—by focusing on enabling oversight, we

allow decision makers the flexibility of discretion when designing a decision policy

and may even enable a world in which decisions are processed automatically, but

where the policies associated to those decisions are expansive and flexible enough to

address concerns with their rigidity and blindness to possible unfairness or sources of

discrimination.

Further, by reviewing a decision policy for the places where discretion can be

most helpful, a decision maker can focus on what outcomes it desires and whether
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its policy achieves those outcomes. Indeed, if individual decision outcomes are to be

subject to oversight scrutiny later, decision makers have a strong incentive to review

their practices and the outcomes they generate to maximize the likelihood that those

practices will be acceptable to the overseer. In turn, if the overseer is responsive to

pressures from the public or the law, acceptability to the overseer will imply various

degrees of concordance with public values or compliance with the law.

7.4.1 Recommendations for Computer Scientists: Design for

After-the-Fact Oversight

Computer scientists may tend to think of accountability in terms of compliance with a

detailed specification set forth before the creation of a computer system. For example,

it is typical for programmers to define bugs based on the specification for a program—

anything that di↵ers from the specification is a bug; anything that follows it is a

feature.

However, such a mindset can conflict deeply with many sources of authority to

which developers may be responsible. Public opinion and social norms are inherently

not precisely specified. The corporate requirements to satisfy one’s supervisor (or

one’s supervisor’s supervisor) may not be clear. Perhaps least intuitively for computer

scientists, the operations of U.S. law and policy also work against clear specifications.

Below, we explain in more detail why these processes often create ambiguous laws,

leaving details—or sometimes even major concepts—open to interpretation.

One cause of this ambiguity is the political reality of legislation. Legislators may

be unable to agree on details but able to get votes to pass relatively vague language.

Di↵erent legislators may support conflicting specific proposals that can be encom-

passed by a more general bill. Alternatively, legislators might not know precisely

what they want but still object to a particular proposed detail; each detail causing
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su�cient objections would need to be stripped out of a bill before it could become

law.

Another explanation of ambiguity is uncertainty about the situations to which a

law or policy will apply. Drafters may worry that they have not fully considered the

space of possibilities and may want to build in enough flexibility to cover unexpected

circumstances. Incorporating this kind of give can allow a law or policy to grapple

with not only current situations but also future technologies or developments that

were impossible to anticipate. The U.S. Constitution is often held up as an example

of this benefit: generalized provisions for governance and individual rights continue

to be applicable even as the landscape of society changes dramatically.

Finally, ambiguity may stem from shared uncertainty about what tactic is best.

Here, drafters may feel that they know what situations will arise but still not know

how they want to deal with them. Vagueness supports experimentation to help de-

termine what methods are most e↵ective or desirable.

The United States has a long history of dealing with these ambiguities through

after-the-fact oversight by the courts. Disagreements about the application of a law

or regulation to a specific set of facts can be resolved through cases, and the holes

of ambiguity are filled in by the accretion of many rulings on many di↵erent, specific

situations. Though statutes and regulations may have specific and detailed language,

they are expected to be interpreted through caseswith appropriate deference given

to the expertise of administrative agencies. Those cases form binding precedents,

which in the U.S. common law system, are as authoritative a source of law as the

statutes themselves. The gradual development and extension of law and regulations

through cases with specific fact patterns allows for careful consideration of meaning

and e↵ects at a level of granularity that is usually impossible to reach during the

drafting process.
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The above discussion is intended to inform computer scientists that no one will

remove all the ambiguities and o↵er them a clear, complete specification. Although

law- and policymakers can o↵er clarifications or other changes to guide the work

done by developers, drafters may be not only unable to remove certain ambiguities

for political reasons but also unwilling to do so because of their desire to imbue

the law with flexibility. As such, computer scientists must account for the lack of

precision—and the corresponding need for after-the-fact oversight by courts or other

reviewers—when designing automated decision making systems.

In practice, these characteristics imply that computer scientists should focus on

creating computer systems that are reviewable, not just compliant with the specifi-

cations that are generated in the drafting process. It is not enough to build a system

in accord with a particular specification—overseers evaluating the decision at a later

point in time also need to be able to certify that fact. It would be good for the

Diversity Visa Lottery described in Chapter 6, Section 6.3.3 to use a technique for

making fair random choices; it would be better for the State Department to be able

to demonstrate that property to a court or a skeptical lottery participant.

The technical approaches described in this dissertation provide several ways for

computer system designers to ensure that properties of the basis for a decision can

be verified later. With these tools, reviewers can check whether a particular program

actually was used to make a specific decision, whether random inputs were chosen

fairly, and whether that program comports with certain principles specified at the

time of the design. Essentially, these technical tools allow continued after-the-fact

evaluations of computer systems by allowing for and assisting the judicial system’s

traditional role in ultimately determining the legality of particular decision making.

Implementing these changes would improve the accountability of automated de-

cision making systems dramatically, but we see that implementation as only a first
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step. We encourage research into extensions of these technical tools, as well as new

techniques designed to facilitate oversight.

7.4.2 On Accountable Algorithms and Fuller’s “Failures of

Law” Argument

We recall briefly the philosophy of law promulgated by Lon Fuller in The Morality

of Law, which argues for the function of legal systems in terms of a list of failures,

or desirable properties that a system of laws might fail to provide. Here, we address

each of Fuller’s failings in turn. Our techniques:

(i.) Show that decisions by an automated system are well justified and followed a

set of procedures that were precisely defined at the time of a decision.

(ii.) Allow such portion of that justification as is reasonable in a particular instance

to be published, while retaining the capability to keep secret things which ought

not be disclosed.

(iii.) Give the opportunity to disclose to the public an understandable version of the

rules governing a process. Further, our techniques enable oversight bodies to

review these rules for consistency with the rules actually used in specific decision

instances. While our techniques do not directly speak to the understandability

of a computational process, they do provide a firm ground on which to build

such understanding. Together with informed overseers and education of decision

subjects, we believe our techniques can make computer systems less opaque,

reducing the fears some authors have raised that such systems are “black boxes”

that exist beyond the strictures of governance and accountability.

(iv.) Our techniques can prove directly that decision policies predate the decisions

in which they are used, either to a decision subject or to a responsible oversight

body.
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(v.) While our techniques do not prevent contradictory decisions, they do make the

justification for decisions available for review. While courts in many countries

rely on an intellectual framework of stare decisis, our oversight-driven approach

allows increased flexibility over traditional a priori specification of goals, poli-

cies, and invariants in computer systems. This flexibility, in turn, means that

the presence or absence of contradictions is determined by inherently political

adjudication processes. However, our techniques at least expose the possibility

of such political accountability.

(vi.) Again, our framework does not directly address whether automated decision

policies are reasonable or proportionate to a particular set of circumstances.

However, they do make information available, at least to an overseer, which can

facilitate discussion and resolution of this political question.

(vii.) Our techniques make it precisely clear when decision policies have changed, cre-

ating incentives for stable decision policies and enabling oversight authorities

and the public to understand when the facts of a policy have changed. With tra-

ditional natural language policy disclosures, because there is no tight coupling

of the policy disclosure to actual decisions, the disparity between disclosed and

actual practice can easily grow quite large before new policies are announced.

(viii.) Our techniques precisely address the question of whether and when there is a

gap between the specification of a policy and its execution. Simply put, under

our protocol, such divergence cannot happen without immediate detection.

In short, our techniques directly remediate many possible failings of systems of

laws and rules, while enabling further improvement by informing politically driven

oversight.

202



7.4.3 Recommendations for Law- and Policymakers

The other side of the coin is that law- and policymakers need to recognize and adapt

to the changes wrought by automated decision making. Characteristics of computer

systems o↵er both new opportunities and new challenges for the development of

legal regimes governing decision making: automated decision making can reduce the

benefits of ambiguity, increase accountability to the public, permit accountability

even when aspects of the decision process remain secret.

Reduced Benefits of Ambiguity

Although computer scientists can build computer systems to permit after-the-fact

assessment and accountability, they cannot alter the fact that any algorithm design

will encode specific values and involve specific rules, which will be applied broadly

and at high speed due to the automated nature of the types of decisions we are

considering. Furthermore, as we have explained throughout this dissertation, after-

the-fact accountability can be limited by algorithmic design—in other words, if an

algorithm is not designed to permit certification of a particular characteristic, an

oversight body cannot be certain that it will be able to certify that characteristic.2

Both of these traits imply that automated decision making can exacerbate certain

disadvantages of legal ambiguities.

In the framework set forth above, we identify three possible explanations for am-

biguity: political stalemate, uncertainty about circumstances, and desire for policy

experimentation. Here, for each of these cases, we will discuss how the calculation

of the relative advantages of precision versus ambiguity shifts when applied to auto-

mated decision making and will o↵er suggestions for retaining the intended benefits

of the U.S. lawmaking system.

2See our discussion of the problems with transparency and especially the mention of Rice’s
Theorem in Chapter 2, Section 2.2.3.
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Ambiguity stemming from political stalemate essentially passes the buck for de-

termining details from legislators to someone later in the process. These later actors

tend to be more sheltered from political pressures and thus able to make specific

decisions without risking their jobs at the next election. Currently, judges and bu-

reaucrats ideally would fill this role: courts are expected to o↵er impartial decisions

resistant to public pressure; administrative agencies similarly are expected to retain

sta↵ despite changes in political administrations, and those sta↵ members also should

o↵er subject matter expertise beyond what is expected of legislators.

However, this transfer of responsibility sometimes works in less than ideal ways.

Automated decision making may exacerbate these problems by adding another actor

to whom the responsibility can devolve: the developer who programs the decision

making software. Citron o↵ers examples of failures in automated systems that de-

termine benefits eligibility, airport “No Fly” lists, terrorist identifications, and pun-

ishment for “dead-beat” parents [94]. Lawmakers should consider this possibility

because (i.) the program implementing a particular policy will apply broadly, af-

fecting all participants, (ii.) the developer is unlikely to be held accountable by the

current political process, and (iii.) the developer is unlikely to have expertise about

the decision being made. All of these factors suggest that lawmakers should avoid

giving the responsibility for filling in details of the law to developers. One potential

method for restricting the discretion of developers—without requiring specifications

in the legislation itself—would be to legislate guidance of software development by

administrative agencies. Di�culties in translating between code choices and policy

e↵ects still would exist, but could be eased using the technical methods we have de-

scribed. For example, administrative agencies could work together with developers

to identify the properties they want the computer system to possess, and the system

then could be designed to permit proof that it satisfies those properties.
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Ambiguity generated by uncertainty about circumstances or by a desire for policy

experimentation presents a more direct concern. Here, the problem raised by auto-

mated decision making is that a computer system locks in a particular choice of the

code implementing some policy for the duration of its use. Especially in government

contexts, provisions may not be made to update the code. Worries about changing

or unexpected circumstances could be assuaged by adding sunset provisions to de-

ployments, requiring periodic review and reconsideration of the software. Computer

systems additionally could be designed with eventual revisions and updates in mind.

As for preserving the benefits of policy experimentation, the traditional solution might

be having multiple algorithms, perhaps implemented by independent teams restricted

in their communication; a more sophisticated version of this solution is the incorpo-

ration of machine learning into decision making systems. Again, machine learning

can have its own fairness pitfalls, and care should be taken to consider fair machine

learning methods and to build in precautions like persistent testing of the hypotheses

learned by a machine learning model.

More generally, the benefits of ambiguity decrease in the case of automated deci-

sion making: the details may be determined by an uninformed actor and then applied

broadly and swiftly; the choice of algorithm to implement a particular policy and the

implementation of that algorithm in code cements the particular policy choices en-

coded in a computer system for as long as it is used. Drafters should consider whether

they instead should increase the specificity o↵ered by law and policy governing these

systems.

To a certain extent, this question mirrors the old rules versus standards debate

in the legal literature [224, 328] about the relative merits of laws that specify ac-

tions and their repercussions (for example, a speed limit) and those that espouse a

principle open to interpretation (for example, “drive at a speed reasonable for the
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conditions”). Rules give clarity and forewarning; standards o↵er greater flexibility

for interpretation.

Here, the question is whether drafters should include additional and clearer spec-

ifications for developers. In practice, drafters may wish to incorporate a set of nar-

row rules within a broad, overarching standard. For example, drafters could include

(i.) specifications of each of the properties that they want to ensure that a computer

system possesses and requirements that developers design the system in a way that

renders those properties provable upon review; alongside (ii.) a general statement of

purpose for the computer system. Doing so would give the developer some flexibility

in writing the code while also ensuring that particular properties can be checked later.

Accountability to the Public

Oversight is traditionally performed by courts, enforcement agencies or other desig-

nated entities such as government prosecutors. Typically, the public and third parties

have an indirect oversight role through the ability to provide political feedback and

the ability to bring lawsuits if their specific circumstances allow. The use of com-

puter systems can alter how e↵ectively the legal system and the public can oversee

the decision making process.

In one sense, automated decision making can enhance accountability to the public

and interested third parties by permitting greater involvement in oversight. The

technical tools we describe allow for a more direct form of oversight by these parties.

Unlike traditional legal oversight mechanisms that generally require discovery or the

gathering of internal evidence, the technical tools presented in this dissertation enable

verifications by the public and third parties that are not completely independent

from the organizations using our techniques. For example, technologically proficient

members of the public or third parties could perform the verifications that a particular

policy was used or that it has particular properties. In addition, open-source tools
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could be built for participants to check these properties for their own outcomes so

that non-technical users could perform these verifications, while the system itself

could be overseen by others—potentially both inside and outside of government—

who do have the needed technological expertise. As another example, third parties

could be involved in generating fair randomness.

Accountability by way of public oversight can also help assuage concerns about

data use and collection practices—if members of the public can verify that the results

of consequential decisions were well justified, they may be more willing to allow

decision makers to collect and retain other data, since they know these data do

not bear on important decisions. This, in turn, improves the overall ecosystem of

automated decision making because many techniques for guaranteeing formally that

decisions are fair require awareness of protected status information, as described in

chapter 2.

In contrast to the possibility for enhanced public accountability, the use of com-

puter systems and the reliance on technical tools for oversight can also reduce account-

ability to the public by hampering the traditional court-based scrutiny of decision

making. The U.S. court system is designed to protect against wrongful government

actions through the power of judicial review. Judicial review gives judges the power

and responsibility to determine if government actions comply with legal obligations.

Similarly, for private actions, the legal system vests judges and regulatory agencies

with the authority to determine whether those actions are consistent with legal stan-

dards.

However, the use of technical tools shifts the determination of regularity from

the courts and enforcement agencies to other parties, specifically external experts or

the organizations using the computer systems themselves. This arises because the

courts and enforcement agencies are no longer making the determination whether the

rules have been properly applied. The determination shifts to the experts evaluating
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the automated decision making process. One way to address this unintended shift

in responsibility might be to appoint technical experts as special masters. Courts

typically appoint special masters to perform functions on behalf of the court that

require special skill or knowledge.

Another issue that challenges public accountability is the validation of technical

tools such as those presented in this dissertation. For courts, technical tools cannot

be accepted until their integrity and reliability are proven. Courts, though, have

long confronted the problem of the admissibility of scientific evidence. For example,

the courts took years during the 1980s and 90s to establish and accept the scientific

validity of DNA and the methods used to isolate DNA. The Federal Rules of Civil

Procedure now provide for the acceptability of new scientific methods in adversarial

proceedings. In 1993, the Supreme Court set out standards to meet the Federal

Rules requirements that include testing, peer review and publication. This addresses

the validation of technical tools used to examine automated decision making, but

still leaves open the assurance of the technical tools’ reliability. Ordinarily, the U.S.

legal system relies on the adversarial process to assure the accuracy of findings. This

attribute may be preserved by allowing multiple experts to test automated processes.

Secrets and Accountability

Implementing automated decision making in a socially and politically acceptable way

requires advances in our ability to communicate and understand fine-grained partial

information about how decisions are reached: Full transparency (disclosing every-

thing) is technically trivial but politically and practically infeasible nor always useful

as described in Chapter 2, Section 2.2.3. However, disclosing nothing about the ba-

sis for a decision is socially unacceptable and generally poses a technical challenge.3.

3Indeed, in 2015, we confront nearly daily news reports of data breaches a↵ecting large companies
and governments and their decision making processes
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Law- and policymakers should remember that it is possible to make a computer sys-

tem accountable without the evaluator having full access to the system.

U.S. law and policy often focuses upon transparency or even equates oversight

with transparency for the overseer. As such, accountability without full transparency

may seem counterintuitive. However, oversight based on partial information occurs

regularly within the legal system. Courts prevent consideration of many types of

information for various policy reasons: disclosures of classified information may be

prevented or limited to preserve national security; juvenile records may be sealed

because of a decision that youthful mistakes should not follow one forever; and other

evidence is deemed inadmissible for a multitude of reasons, including being unscien-

tific, hearsay, inflammatory, or illegally obtained. Thus, precedent exists for basing

oversight on partial information.

Strong policy justifications exist for holding back information in the case of au-

tomated decision making. Revealing decision policies, the code implementing them,

and their input data can expose trade secrets, violate privacy, hamper law enforce-

ment, or lead to gaming of the decision making process. One advantage of computer

systems over human-mediated decision processes is that concealment of code and data

does not imply an inability to analyze that code and data. The technical tools we

describe in this dissertation give law- and policymakers the ability to keep algorithms

and their inputs secret while still rendering them accountable. They can apply these

tools by implementing them in government-run computer systems, such as the State

Department’s Diversity Visa Lottery (see Chapter 6, Section 6.3.3), and to provide

incentives for non-governmental actors to use them, perhaps by mandating that use

or by requiring transparency—at least to designated overseers—of decision policies

and their inputs if they do not employ such technical tools.
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7.4.4 The Su�ciency of Accountability

Much of our discussion so far has taken accountability as a necessary goal for computer

systems to achieve trust and acceptance by those who depend on them. Here, we

argue that accountability is also su�cient to achieve such trust. This question is

inherently a political one, since it aims to answer the question of why people trust

institutions. Because of this, the question is well studied in political and social theory.

We deliberately place a summary of this literature outside the scope of this section,

however, as it would detract from our goal of attempting an answer relevant to the

material of this chapter and this dissertation.

Accountability as we have defined it implies that the social, legal, and political

structures that govern an automated process can function as they are intended to

function. While they may not function perfectly and may produce unfair or unjust

outcomes in individual cases, those structures exist because they constitute the best

compromise for governance available in a society, and one the members of that society

are willing to participate in.

Our definition of accountability also requires that the public be able to verify that

an automated process satisfies the governance requirements just mentioned. In the

most trivial case—that of a process which executes purely deterministically and for

which none of the process rules or input are secret—this can be accomplished by full

transparency. An audit log that discloses how the process operated can provide the

necessary public answerability required to make the process accountable to governance

structures if it creates unacceptable outcomes. In more complicated cases, we merely

require that the public be able to verify that some trusted authority, vested with the

powers of governance, be able to review the process for correctness or compliance with

public values and the law. In this way, the answerability of a process for unacceptable

behavior devolves to the designated oversight body, such that trust in the automated
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process itself relies on trust in the oversight body. This trust, in turn, relies on good

governance of the oversight body.

One possible base case for this recursion can be found in social contract theory

(summarized briefly in Chapter 2, Section 2.2.1), which argues that the willingness of

members of a society to participate in that societies institutions is a proxy for their

acceptance of those institutions. The social contract also gives a kind of ultimate

answerability for governance of institutions in the form of the withdrawal of consent

to participate.

In practical terms, our theory suggests a way forward for the governance of au-

tomated decision processes: we wish to further develop the tools presented in this

dissertation but also to encourage the agencies within and outside government that

oversee the deployment of consequential automated decision systems to adopt either

our techniques or rules demanding that the processes they review be constructed

in such a way as to facilitate that review. To that end, we advocate for a greater

focus on accountability and oversight within the computer science community and

simultaneously work to improve the extent of knowledge of available techniques for

practitioners and researchers in the law and policy spaces.

Also practically, we remark that review of a process to design an oversight regime

forces much important consideration of the specification for that process, since what-

ever specification it gets, that design will be available for outside review later, even

if only to trusted third parties. This provides an incentive for decision makers to

attempt to be compliant with social, legal, and political norms ex ante, so as not

to find themselves facing punishment or loss of face later. It may also present an

opportunity for the deployment of the many robust technical measures and formal

methods developed to ensure the correspondence of systems as deployed with systems

as designed.
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We firmly believe that these techniques, properly deployed, can help improve the

governance and oversight of algorithms. Many authors have questioned the rush to-

wards automation for consequential processes with a broad impact, whether operated

by government or privately ordered [24,26,94–97,106,121,138,153,287,293–295,326,

327]. We are sanguine, however, on the prospects for governable automated processes;

automation provides a framework by which to investigate properties of decision mak-

ing processes which are simply not available for review when the process is executed

in the mind of a human.
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[44] Guido Bertoni, Joan Daemen, Michaël Peeters, and GV Assche. The keccak reference.
http://keccak.noekeon.org, 2011.
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[166] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

[167] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A.
Kroll, Edward W. Felten, and Arvind Narayanan. Securing bitcoin wallets via a new
dsa/ecdsa threshold signature scheme. [Online]. http: // www. cs. princeton. edu/

~

stevenag/ threshold_ sigs. pdf , 2015.

[168] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press,
2001.

[169] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice
problems. Electronic Colloquium on Computational Complexity (ECCC), 3(42):236–
241, 1996.

[170] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[171] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[172] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceed-
ings of the forty-fifth annual ACM symposium on Theory of computing, pages 555–564.
ACM, 2013.

[173] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Advances in
Cryptology–CRYPTO 2013, pages 536–553. Springer, 2013.

[174] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[175] Shafi Goldwasser, Silvio Micali, and Charles Racko↵. The knowledge complexity of
interactive proof-systems. In Proceedings of the seventeenth annual ACM symposium
on Theory of computing, pages 291–304. ACM, 1985.

[176] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[177] Shafi Goldwasser, Silvio Micali, and Avi Wigderson. How to play any mental game, or
a completeness theorem for protocols with an honest majority. Proc. STOC, 87:218–
229, 1987.

[178] Don Gotterbarn, Keith Miller, and Simon Rogerson. Software engineering code of
ethics. Communications of the ACM, 40(11):110–118, 1997.

[179] Don Gotterbarn, Keith Miller, and Simon Rogerson. Software engineering code of
ethics is approved. Communications of the ACM, 42(10):102–107, 1999.

224

http://www.cs.princeton.edu/~stevenag/threshold_sigs.pdf
http://www.cs.princeton.edu/~stevenag/threshold_sigs.pdf


[180] Vipul Goyal, Payman Mohassel, and Adam Smith. E�cient two party and multi
party computation against covert adversaries. EUROCRYPT, 2008.

[181] Ruth W Grant and Robert O Keohane. Accountability and abuses of power in world
politics. American political science review, 99(01):29–43, 2005.

[182] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simu-
latable oblivious transfer. In ASIACRYPT, pages 265–282, 2007.

[183] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious
transfer. In Advances in Cryptology-ASIACRYPT 2008. Springer, 2008.

[184] Albert G. Greenberg and Neal Madras. How fair is fair queuing. Journal of the ACM
(JACM), 39(3):568–598, 1992.

[185] Dimitris A Gritzalis. Secure electronic voting, volume 7. Springer Science & Business
Media, 2012.

[186] Jens Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology-
ASIACRYPT 2010, pages 341–358. Springer, 2010.

[187] Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear groups.
In Advances in Cryptology–EUROCRYPT 2008, pages 415–432. Springer, 2008.

[188] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. Protecting private keys
against memory disclosure attacks using hardware transactional memory. Proc. IEEE
S & P, 2015.

[189] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical privacy in online ad-
vertising. In NSDI, 2011.

[190] B Guido, D Joan, P Michaël, and VA Gilles. Cryptographic sponge functions. http:
//sponge.noekeon.org/, 2011.

[191] Naji Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Mathieu. Asax:
Software architecture and rule-based language for universal audit trail analysis. In
Computer SecurityESORICS 92, pages 435–450. Springer, 1992.

[192] Andreas Haeberlen. A case for the accountable cloud. ACM SIGOPS Operating
Systems Review, 44(2):52–57, 2010.

[193] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Ac-
countable virtual machines. In OSDI, pages 119–134, 2010.

[194] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical
accountability for distributed systems. In ACM SIGOPS Operating Systems Review,
volume 41:6, pages 175–188. ACM, 2007.

[195] Sara Hajian. Simultaneous discrimination prevention and privacy protection in data
publishing and mining. PhD thesis, Universitat Rovira i Virgili, 2013.

[196] Sara Hajian, Josep Domingo-Ferrer, and Oriol Farràs. Generalization-based privacy
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