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‘We present the results of using an extension of the FORM gesture dataset to predict the
mid-level phenomenon of phase. We compare the results of human phase predition with
automated prediction using machine-learning techniques. Specifically, we present the
results of hidden-Markov model experiments using an extended version of the FORM
data to predict phase labels. Additionally, we compare FORM to the currently most
accepted method of data gathering in this field—motion capture—by comparing the
predictive accuracy of the physical gesture models produced by FORM and motion
captur for phase labeling.
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1. Introduction

The most obvious way that humans communicate is through speech. As such, there
has been a great deal of work in Linguistics, Logic, and Computer Science aimed at
understanding, formalizing, and automatically generating and analyzing all aspects
of human speech. However, speech is not the only means of communication available
to us; we are able to send complex and subtle messages to each other via a variety
of other means as well.

Gesture, for example, is an important channel for conveying intent and mean-
ing. However, the field of gesture studies has only very coarse-level categorizations
covering the types of gestures and very little in the way of fine-grained description
techniques. Gestures are commonly divided into only four broad categories—beat,
iconic, metaphoric, and deictic—and each gesture is further decomposable into its
constituent phases. These phases are essentially of only four types: preparation,
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stroke, hold and retraction®. However, the need for a more fine-grained system is
well understood. In [12], Wittenburg et al., when describing the choices they made
while designing their annotation scheme, state that “it was soon perceived that an
exhaustive gesture encoding including all relevant characteristics would be ideal but
impossible (except for small segments).”

At least some gestures are classifiable as alluded to above. Further, these gestures
may be able to be broken down into their constituent phases. However, a coding (or
annotation) scheme that only labels the gesture as a whole runs the risk of missing
important variations in meaning created by subtle changes in the components of a
gesture in question. Similar to facial expression, slight differences in the make-up of
a beat gesture, for example, may well express very different things concerning the
mood or intention of the speaker.

Accordingly, [7] developed a fine-grained, gesture coding scheme—FORM—that
allowed annotators to exhaustively capture the constituent physical parts of the ges-
tures of video-recorded speakers. In this article, we present an extension of FORM
and the results of using it to predict the mid-level phenomenon of phase. In partic-
ular, we compare the results of human phase predition with automated prediction
using machine-learning techniques. Specifically, we present the results of hidden-
Markov model experiments using the extended FORM data to predict these phase
labels. Additionally, we compare extended FORM to the currently most accepted
method of data gathering in this field—motion capture—by comparing the pre-
dictive accuracy of the physical gesture models produced by FORM and motion
capture for phase labeling.

2. The FORM Annotation Scheme

FORM is designed as a series of tracks representing different aspects of the gestural
space. Each track is a series of gesture features (here referred to as “objects”)
parameterized by time. Generally, each independently moved part of the body has
two tracks, one track for Location/Shape/Orientation, and one for Movement. When
a part of the body is held without movement with respect to the gesturer, a Location
object describes its position and spans the amount of time the position is held.
When a part of the body is in motion, Location objects of zero duration are placed
at the beginning and end of the movement to show where the gesture began and
ended. Location objects with zero duration are also used to indicate the Location
information at critical points (maxima, minima, and points of inflection) in certain
gestures, i.e., location objects occur at keyframes.

An object in a movement track spans the time period in which the body part
in question is in motion. It is often the case that one part of the body will remain
static while others move. For example, a single hand shape may be held throughout
a gesture in which the upper arm moves. FORM’s multi-track system allows such

aCft. [2], [3], [5], [6], and [8]
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disparate parts of single gestures to be easily annotated separately. Once all tracks
are filled with the appropriate information, it is easy to see the structure of a gesture
broken down into its anatomical components.

2.1. Extending FORM by Adding a 5 X 5 X 5 Grid to FORM

For the experiments described in this paper, we have extended FORM to include
additional attributes and values for wrist location. These allow us to specify in a
5 x 5 x 5 grid the z, y, and z coordinates of the wrist (or end-effector). This grid is
relative to the location of the body, thereby eliminating the problem of incidental
motion. To accomplish this, we simply take the sternum to be (2,2,2).

2.2. The FORM Corpus

FORM is a corpus of about 22 minutes of Brian MacWhinney teaching a Research
Methods course at Carnegie Mellon University. These data were chosen since they
were freely available via the TalkBank project (http://www.talkbank.org). They
have been very useful for the project as people often gesture in a clear and exag-
gerated fashion while teaching.

3. Experimental Overview

As we have noted, we gestures can be segmented into the phases Preparation, Stroke,
and Retraction with each adjacent phase possibly separated by a Hold. In this
section, we will describe how we use the extended FORM representation to generate
a matrix of vectors for each of these phases. We will then describe how we used this
labeled data to run a series of hidden Markov model (HMM) experiments with the
goal of predicting phase labels from the FORM representation.

As described in Section 2.1, we extended FORM by adding end-effector position
given as (xz,y, z) coordinates in a 5x 5 x 5 grid. If we combine these coordinates with
the value of the upperArmLift parameter, we get a vector in R* which describes the
position of an arm at a particular frame. So, a sequence of these vectors encode the
movement of an arm through-out a gesture excursion. If we divide the excursion
into sub-sequences of these vectors such that they are co-extensive with the phase
segmentation, we have created a set of labeled data.

However, FORM annotators only put Location markers at critical points in
the gesture. The goal was to approximate zero-crossings in the first and second
derivatives. In order to create the requisite interpolated vectors, then, we take the
R* vectors for each Location point in the gesture excursion and utilize various
interpolation methods to fill in the values for the intervening frames. This generates
a large matrix in R*, the number of columns of which is determined by the number
of frames—at 29.97045 fps—in the excursion. We then divide this large matrix in
accordance with the phase segmentation to generate bins of matrices representing
the different phase types.
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For each of the various interpolation methods, we then run the hidden Markov
model experiment described in Figure 1. It is a version of a cross-validation method
known as Leaving-one-out ([9]). For each iteration of the experiment the training set
is of size N —1, while one data point, i, is used as held-out testing data. This process
is repeated N times so each data point gets left out once.” Our particular algorithm
works as follows. Of the combined set of all phase matrices—which we will call
observations—choose one, observation;, at each iteration and remove it from the set
of observations. Then, for each of the sets of phases Preparation, Stroke, Retraction,
etc, generate a hidden Markov model representing that phase and train with all the
samples for that phase only. Label observation; after the hidden Markov model,
M, which maximizes P(observation;|M). If the label generated for observation;
matches the actual label of observation;, call it a match. Finally, return observation;
to the set of observations. We do this for all 7. Our total percentage of matches is
computed as 100 x (total matched/total number of observations).

function Leave-One-Out(phaseSet,, . . ., phaseSet,) returns percentage of correct classifications
inputs: phaseSet,, . . ., phaseSet,: a list of sets of phase matrices,
e.g. prepSet, strokeSet, retractionSet
local variables: observation: the current held-out phase matrix
M;: the HMM for phaseSet;, e.g. My, is the HMM trained on strokeSet
match: a counter, initially 0, indicating number of correct classifications
percentMatch: a number € [0,100], indicating percentage of correct
classifications
for each observation in {phaseSet; U ... U phaseSet,}
for each phaseSet; in (phaseSet,, . . ., phaseSet,)
M; <= createtHMM(phaseSet;)
if observation € phaseSet; then
Train(M;) using phaseSet; — observation
else
Train(M;) using phaseSet,

PredictedLabel(observation) <= argmax; P(observation | M;)
if PredictedLabel(observation) = actualLabel(observation) then
match++

percentMatch < 100 * (match/total number of observations)
return percentMatch

Fig. 1. Leave-one-out Training Algorithm using One HMM per Phase

bIt is important to note that this method has both advantages and disadvantages. An advantage
is that it allows for exploration of how the model changes for any particular piece of data. In
addition, it is useful for doing cross-validation when the total number of data points is low, as is
the case with the current FORM dataset. On the other hand, Chen and Goodman ([1]) argue that
using larger deleted chunks gives better results. Here, we consider our method as giving something
like an upper bound, as it is dangerously close to testing on the training data. As the size of the
FORM dataset grows, we should be able migrate to safer methods.
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4. Baseline
4.1. Call-all-X

In all of the experiments presented in this article, the baseline used is Call-all-z.
Actually, Call-all-z is a combination of multiple baselines—one per phase—that
produces particularly conservative results. For each of the phases, z, in the experi-
ment, we assumed an algorithm that labels all observations as z. For example, the
Call-all-Prep baseline labels every observation as a preparation. Precision is cal-
culated simply as the proportion of actual preparations in the dataset. Recall will
always be 1. Mutatis mutandis for all other phases.

These baseline results are conservative since the recall score for each phase is 1,
which will drive up the baseline f-score for each phase. The important point here is
that the high recall is not at the expense of precision. If it it were, then the f-score,
being simply a special case of the harmonic mean, would be lower.

Finally, please note that sometimes baseline numbers are different across exper-
iments using the same data set. This is an artifact of the HMM system we used®.
Depending on how a particular HMM was trained, testing does not always com-
plete. That is, the test observation may contain too few frames for one or more of
the testing HMMs to return a probability. In these cases, GT2K/HTK simply re-
turns an answer of “too few frames” and the observation is not labeled. However, to
compare the results of experiments with different baseline numbers, we can simply
look at the percent difference from the baseline f-score a particular algorithm is at
predicting the phases. This is what is reported in the + Baseline column of Tables
I-XI.

5. PSR vs PSRH vs PSRHU

Because phase segmentation is not always cognitively clear, we added an “Unsure”
category so that annotators could mark those frames in the penumbra between
phases. However, this category can confuse prediction results because it subsumes
features of all other phase categories. Additionally, there was a particular confusion
between the Hold and Unsure categories. One would expect, then, that running
Leaving-one-out using all five categories would produce lower results than running
it with the Unsure category left out. Further, one would expect that experiments
using just Preparation, Stroke, and Retraction would produce the best results. As
the experiments in Tables I-IV show, these predictions turn out to be the case. For
all of these experiments, we interpolated using cubic splines and vector quantized
using the k-means algorithm with & = 1000.

Table I gives the results of running Leaving-one-out using all phases—
Preparation, Stroke, Retraction, Hold, and Unsure—as inputs. As expected here,
the Unsure category did very poorly with respect to the baseline f-score, as did

“We used HTK ([13]) and the Georgia Tech Gesture Toolkit ([11]) to build and train the HMMs.
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Stroke. The other categories did better than baseline or were essentially the same.
The poor results are not surprising given Table II, the confusion matrix for this
experiment. Both Unsure and Hold caused a lot of off-diagonal confusion.

Table I also gives the results of running the experiment without the Unsure
category. Here we see that removing Unsure increases our results as expected. From
Table III, though, we can see that Hold is still creating a large amount of confu-
sion. Again, this is due to the inconsistency of the annotation. Training annotators
better on how to deal with incidental movement, so that holds are more uniformly
annotated, may help with this.

Finally, Table I gives the results of just using Preparation, Stroke and Retraction.
Table IV shows that this experiment has the least amount of confusion, although
preparations are still often labeled as “Stroke.”

6. First Experiments

In this section, we present the results of our first experiments using FORM. These
are all location-based experiments, which were conducted as described in Section 3.
We are calling them location-based experiments, because each vector of the phase
matrices represents an arm location for that frame. This section is divided into
balanced and unbalanced experiments. The balanced experiments attempt to max-
imize precision and recall for all three phases, while unbalanced experiments try to
maximize precision at the expense of recall, which is useful in some applications.

6.1. Balanced FExperiments

The results of the balanced experiments are given in Table V. All of the experiments
are versions of Leaving-one-out with the differences being in the interpolation and
vector-quantization methods used. In all of these experiments, the UpperArmLift
parameter is simply linearly interpolated.

e Fixed-Grid: In this experiment we first linearly interpolated between the
points given in the data. Then, we vector quantized by labeling each vector
within a cube of the 5 x 5 x 5 grid, e.g, (1,1, 1), by the name of that cube.
To do this, we simply rounded the results of the linear interpolation. So,
for example, (1.235,1.45,1.75) becomes (1,1,2).

e 1,500: For this experiment, we first linearly interpolated between the points
given in FORM, and then vector quantized using the fast k-means algorithm
given in [4].9 In this case k = 500.

e [,1000: This experiment was the same as above except k = 1000.

dAll vector quantizing for these experiments was done using the Matlab code available at
http://www.cse.ucsd.edu/users/elkan/fastkmeans.html. We found it to be orders of magnitude
faster than standard k-means.
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H PREPARATION Precision | Recall | F-Score ‘ +Baseline H
Call-all-Prep-PSRHU 0.15 1.00 0.26
PSHRU 0.38 0.66 0.48 +85%
Call-all-Prep-PSRH 0.19 1.00 0.32
PSRH 0.45 0.67 0.54 +69%
Call-all-Prep-PSR 0.27 1.00 0.43
PSR 0.50 0.68 0.58 +35%

H STROKE Precision | Recall | F-Score ‘ +Baseline H
Call-all-Stroke-PSRHU 0.30 1.00 0.46
PSRHU 0.46 0.49 0.47 +2.2%
Call-all-Stroke-PSRH 0.40 1.00 0.57
PSRH 0.58 0.60 0.59 +3.5%
Call-all-Stroke-PSR 0.54 1.00 0.70
PSR 0.80 0.61 0.69 -1.4%

H RETRACTION Precision | Recall | F-Score ‘ +Baseline H
Call-all-Retraction-PSRHU 0.11 1.00 0.20
PSRHU 0.49 0.56 0.52 +160%
Call-all-Retraction-PSRH 0.14 1.00 0.25
PSRH 0.65 0.69 0.67 +168%
Call-all-Retraction-PSR 0.19 1.00 0.32
PSR 0.72 0.82 0.77 +141%

H HOLD Precision | Recall | F-Score ‘ +Baseline H
Call-all-Hold-PSRHU 0.20 1.00 0.33
PSRHU 0.43 0.26 0.32 -3.3%
Call-all-Hold-PSRH 0.26 1.00 0.41
PSRH 0.53 0.27 0.36 -12%

H UNSURE Precision | Recall | F-Score ‘ +Baseline H
Call-all-Unsure 0.25 1.00 0.40
PSRHU 0.34 0.24 0.28 -30%

Table 1. Precision, Recall, and F-Score Results for S1000 on the Brian Data Set using Preparation,
Stroke, Retraction, Hold and Unsure

e S500: In this case, we first used spline3() function from Matlab 7.0 to
generate cubic splines between the FORM points. We then vector quantized
with & = 500.

e S1000: As above, but & = 1000.

e SnoVQ: In this case, we used spline3() to generate cubic splines, but utilized
all the vectors as given. That is, we did not vector quantize.
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Prediction Preparation | Stroke | Retraction | Hold | Unsure
Truth
Preparation 69 22 6 2 )
Stroke 47 102 6 17 35
Retraction 5 3 42 9 16
Hold 24 38 14 36 24
Unsure 36 59 18 19 41
Table 2. Confusion Matrix for S1000-PSRHU
Prediction Preparation | Stroke | Retraction | Hold
Truth
Preparation 70 26 6 2
Stroke 53 125 8 21
Retraction 8 5 52 10
Hold 25 60 14 37
Table 3. Confusion Matrix for S1000-PSRH
Prediction . .
Truth Preparation | Stroke | Retraction
Preparation 71 26 7
Stroke 63 127 17
Retraction 8 6 62

The unbalanced experiments we did are as follows. The results are in Table VI. For

all of them we used cubic-spline interpolation.

e S1000.50: This is the same as S1000, above, but we added a measure of
uncertainty. If the difference between the log-probability of the most likely
model and the second most likely model was greater than 50% of the differ-
ence between the most likely and the least likely, we deemed the labeling to
be uncertain. The 50% mark was chosen empirically to give the best results.
We did this in the hope of increasing our precision, even at the expense of
recall. As is evident, we did raise precision, but only from 0.5 to 0.51, while
recall dropped from .68 to .38.

e P.25.500: For this experiment, we explored adding context from the previous
phase, in the hopes that more context would increase the results. The P in
the title indicates that we prepending context from the prior phase to the
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Prep

Precision | Recall | F-Score | +Baseline
Call-all-Prep 0.27 1.00 0.43
Fixed-Grid 0.45 0.63 0.53 +23%
L500 0.50 0.64 0.56 +30%
L1000 0.46 0.67 0.55 +28%
S500 0.45 0.62 0.52 +21%
S1000 0.50 0.68 0.58 +35%
SnoVvVQ 0.47 0.69 0.56 +30%

Stroke

Precision | Recall | F-Score | =Baseline
Call-all-Stroke 0.54 1.00 0.70
Fixed-Grid 0.78 0.60 0.68 -2.9%
L500 0.79 0.61 0.69 -1.4%
L1000 0.78 0.59 0.67 -4.3%
S500 0.78 0.58 0.67 -4.3%
S1000 0.80 0.61 0.69 -1.4%
SnoVvVQ 0.79 0.59 0.68 -2.9%

Retraction

Precision | Recall | F-Score | =Baseline
Call-all-Retraction 0.19 1.00 0.32
Fixed-Grid 0.76 0.83 0.79 +147%
L500 0.67 0.81 0.73 +128%
L1000 0.77 0.79 0.78 4-144%
S500 0.70 0.80 0.75 +134%
S1000 0.72 0.82 0.77 +140%
SnoVQ 0.77 0.81 0.79 +147%

Table 5. Precision, Recall, and F-Score Results for balanced HMM Methods Using the Brian Data
Set

current phase. The 25 indicates that we are prepending 25% of the prior
phase. The 500 indicates that we vector quantized with & = 500.

e P.25.1000: As above, but k& = 1000.

e P.25.1000.373: As above, but if the difference between the highest log-prob
and the second-highest log-prob was .373 or greater of the difference be-
tween the highest log-prob and the lowest log-prob, we called the labeling
uncertain. Again, this number was empirically chosen to maximize preci-
sion.

e A.25.500: In this experiment, we explored appending 25% of the following
phase to the current phase. The idea is to use context from later in the
gesture. Again, vector quantization was done with k& = 500.
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e A.25.500.148: As before, we appended 25% of the following phase to the
current phase; and, if the difference between the highest and second highest
log-probability was .148 or greater of the difference between the highest and
lowest log-probability, the labeling was deemed unsure. As before, .148 was
determined empirically to maximize precision.

e A.25.1000: Appended 25% of the following phase and vector quantized with
k = 1000.

e A.25.1000.35: Same as above, but the difference cut off was empirically set
to .35.

6.3. First Results

It is interesting to note that retractions seemed the easiest to classify, with its
highest F-score being .79 for the Fixed-Grid, balanced method. If the stroke is the
most definite aspect of the gesture, we would have expected it to be the easiest
to classify. Retractions do have the easily identifiable characteristic of ending in a
rest position. As well, there is usually only one per excursion; there may be many
preparations and strokes per excursion. Additionally, although the first preparation
of an excursion starts from a rest position, the subsequent ones do not. We were
able to use the difference-cut-off technique in the unbalanced section to increase the
precision of stroke recognition, but it was at great expense to recall. A.25.500.148
allowed for a precision of .92, but a recall of .18. Although this may not be useful
for an automatic phase detector, it could be very useful for scientific exploration of
strokes. It would give high assurance that those phases we automatically identified
as strokes were actually strokes. One more thing of note here is that, although
we were able to use the segmentation “tricks” described above to increase certain
statistics, the best overall was simply using cubic-splines and k& = 1000. Further,
this was not that much better than the simplest, Fixed-Grid method that simply
linearly interpolates and rounds the z, y, and z coordinates to the nearest integer
value.

6.4. Significance: McNemar’s Test

Of all the experiments above, S1000 performed the best overall. However, the im-
portant question of whether or not the results are significant needs to be addressed.
Given that all of the above experiments labeled the same pieces of data, and given
that there is not a strong difference among the results of the various experiments,
McNemar’s test, interpreted as a sign test, is very useful.

There was no significant between the different methods except for between S1000
and S500, with two-tailed p-value .49.
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Prep

Precision | Recall | F-Score | =Baseline
Call-all-Prep 0.27 1.00 0.43
S1000.50 0.51 0.38 0.44 +2.3%
P.25.500 0.44 0.41 0.42 -2.3%
P.25.1000 0.35 0.25 0.29 -33%
P.25.1000.373 0.48 0.29 0.36 -16%
A.25.500 0.49 0.60 0.54 +26%
A.25.500.148 0.50 0.41 0.45 +4.7%
A.25.1000 0.45 0.49 0.47 +9.3%
A.25.1000.35 0.49 0.29 0.36 -16.3%

Stroke

Precision | Recall | F-Score | ==Baseline
Call-all-Stroke 0.54 1.00 0.70
S1000.50 0.92 0.06 0.11 -84%
P.25.500 0.74 0.65 0.69 -1.4%
P.25.1000 0.69 0.73 0.71 +1.4%
P.25.1000.373 0.90 0.18 0.30 -57%
A.25.500 0.74 0.59 0.66 -5.7%
A.25.500.148 0.92 0.18 0.30 -57%
A.25.1000 0.72 0.57 0.64 -8.6%
A.25.1000.35 0.83 0.20 0.32 -54.3%

Retraction

Precision | Recall | F-Score | =Baseline
Call-all-Retraction 0.19 1.00 0.32
S1000.50 0.87 0.61 0.72 +125%
P.25.500 0.15 0.56 0.24 -25%
P.25.1000 0.50 0.66 0.57 +78%
P.25.1000.373 0.54 0.71 0.61 +90%
A.25.500 0.30 0.69 0.42 +31%
A.25.500.148 0.30 0.69 0.42 +31%
A.25.1000 0.49 0.80 0.61 +91%
A.25.1000.35 0.53 0.72 0.61 +91%

Table 6. Precision, Recall, and F-Score Results for unbalanced HMM Methods Using Brian Data
Set

7. Dual Data: FORM vs Motion Capture

The results described above may or may not be of interest depending on how well
FORM compares to more precise ways of gathering gestural data. Additionally,
the experiments above only concern one subject, Brian MacWhinney. In order to
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address these issues we built another data set for comparison: the Craig data set.
It comprises approximately three minutes of Craig Martell in a lecturing mode
discussing his teaching methods. The data for this set were gathered in two ways:
motion-captured and video-recorded. The video recordings were than annotated
using extended FORM. This data set, then, allows us to compare FORM to motion-
capture vis-d-vis prediction of preparations, strokes, and retractions. It also allows
us to compare the prediction results of two FORM datasets of different speakers in
similar situations.

Table VII gives the results of these experiments. Again, note that the baselines
may be different among different experiments.®© They are described below in order
of their listing in the table.

7.1. Location-Based Experiments

Our first set of experiments on this dataset were, again, location-based. These were
as follows.

e S51000-Craig: This experiment is the same as the original S1000 experiment
for Brianf. The frames between the location points were interpolated using
cubic splines and then vector quantized to 1000 vectors.

e SnoVQ-Craig: This experiment is the same as the original SnoVQ for Brian.
It is just as above but without the vector quantization.

e mocapl000: For this experiment, we utilized a subset of the 32 motion-
capture marker points to generate end-effector position for each arm, as
well as upperArmLift. This created vectors in R* analogous to those used
in FORM. We then vector quantized to 1000.

e mocapNoV(q: Same as above but without vector quantizing.

e simulatedFORM: In this experiment, we generated a set of key frames in
the motion-capture data, performed cubic-spline interpolation, and vector
quantized to 1000. The key-frames were chosen so as to match the location
points given by the FORM annotation. This experiment was done to see if
the location information of FORM combined with the fidelity of motion-
capture could increase results.

7.1.1. Results

The first result of note is that for Craig, both FORM-annotated and motion-
captured, the SnoVQ experiment did better than the S1000 experiment. This is
likely due to the fact that the Craig data set has only three minutes worth of ges-
turing, as opposed to 20 minutes worth for the Brian data set. In the later case,
the total number of raw vectors, so to speak, is much greater than with the Craig

€Cf. Section 4.
fThe original FORM dataset
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Prep

Precision | Recall | F-Score | +Baseline
Call-all-Prep 0.35 1.00 0.52
S1000-Craig 0.65 0.50 0.57 +5.8%
SnoVQ-Craig 0.67 0.50 0.57 +5.8%
mocap1000 0.56 0.45 0.50 -3.8%
mocapNoVQ 0.61 0.49 0.54 +3.8%
simulatedFORM 0.37 0.91 0.53 +1.9%

Stroke

Precision | Recall | F-Score | +Baseline
Call-all-Stroke 0.45 1.00 0.62
S1000-Craig 0.72 0.69 0.70 +13%
SnoVQ-Craig 0.72 0.73 0.72 +16%
mocap1000 0.64 0.53 0.58 -6.5%
mocapNoVQ 0.69 0.60 0.64 +3.22%
simulated FORM 0.25 0.01 0.02 -9.7%

Retraction

Precision | Recall | F-Score | ==Baseline
Call-all-Retraction 0.20 1.00 0.33
S1000-Craig 0.58 0.86 0.69 +109%
SnoVQ-Craig 0.61 0.86 0.71 +115%
mocap1000 0.46 0.78 0.58 +76%
mocapNoVQ 0.46 0.76 0.57 +73%
simulated FORM 0.41 0.22 0.29 -12%

Table 7. Precision, Recall, and F-Score Results for Various HMM Methods Using the Craig Data
Set

data. This would account for the benefits gained from using vector quantization,
since, as the number of training vectors increases, the number of singleton vectors
also increases. Additionally, Brian MacWhinney is teaching using a white board.
This results in more movements away from the solar plexus than for Craig Martell,
who is only addressing an audience. Vector quantization is useful under these cir-
cumstances as it creates equivalence classes of vectors with a representative vector
for each.

The second interesting result is that FORM did better than motion-capture in
predicting phase labels. Look at SnoVQ-Craig vs mocapNoVQ. The former does
5.8% better than Call-all-Preparation, while mocapNoVQ only does 3.8% better.
This is not a large difference, but now consider Call-all-Stroke. Here SnoVQ-Craig
did 16% better than baseline, while mocapNoVQ only did 3.2% better. The largest
difference is for Call-all-Retraction. There the gain over baseline was 115% and 73%
respectively. Table VIII gives the result of the McNemar’s test for SnoVQ-Craig vs
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Prep Correct | Error | p-Value
Correct 35 16 1.0
Error 15 35

Stroke Correct | Error | p-Value
Correct 57 31 0.09
Error 18 22

Retraction | Correct | Error | p-Value

Correct 41 10 0.18
Error 4 4

All Correct | Error | p-Value
Correct 133 57 0.05
Error 37 61

Table 8. mocapNoVQ (along the top) vs. SnoVQ-Craig (down the side)

mocapNoVQ. Again, it is the case that although there is not a significant difference
for any one phase, the difference overall is significant.

These results are contrary to expectation. One would think that the “physical
truth” given by motion-capture would do better at predicting a mid-level physical
phenomenon like phase than would a cognitition-laden annotation scheme. These
results, then, may indicate that phase prediction is more cognitively based than
was originally thought. One possible explanation for this is that FORM smoothes
incidental movement. For example, there may be some subset of the parameters of
a phase that humans use for classification, and the smoothing of the curve done
by the FORM method may better approximate these parameters. Much more work
needs to be done here, but incidental movement is a known difficulty for gesture
and phase prediction.®

Simulating FORM by using the location points given by annotators to pick out
key-frames in the motion captured data, however, did not work very well. If the
above theory is correct, though, it should have. That is, if the reason for FORM’s
doing better than motion-capture is simply the smoothing of the curve and the
removal of incidental movement, then simulatedFORM should have achieved this.
A possible answer is that the FORM key-frames smooth further by picking out very
chunky locations in space. The motion-capture time-stamp at some form location
frame, 4, will pick out a much more precise region of space. The FORM method
reduces a large number of paths from location; to location; 1 to just one, further
reducing potential sparse-data problems.

gCf. [10] for pointers.
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Prep
Precision | Recall | F-Score | +Baseline
Call-all-Prep-Lec 0.42 1.00 0.59
S1000-Paul-Lec 0.67 0.61 0.64 +8.5%
Call-all-Prep-Con 0.45 1.00 0.62
S1000-Paul-Con 0.63 0.65 0.64 +3.2%
Stroke
Precision | Recall | F-Score | =Baseline
Call-all-Stroke-Lec 0.44 1.00 0.61
S1000-Paul-Lec 0.70 0.62 0.66 +8.2%
Call-all-Stroke-Con 0.43 1.00 0.60
S1000-Paul-Con 0.64 0.58 0.61 +1.7%
Retraction
Precision | Recall | F-Score | =Baseline
Call-all-Retraction-Lec 0.13 1.00 0.23
S1000-Paul-Lec 0.37 0.64 0.47 +104%
Call-all-Retraction-Con 0.12 1.00 0.21
S1000-Paul-Con 0.56 0.68 0.61 +190%

Table 9. Precision, Recall, and F-Score Results S1000 for Paul-Lecture Data Set

8. More Data: Paul

The experiments in the prior sections have primarily cut across two dimensions.
We first looked at FORM location-based experiments and then compared them
to motion-captured location-based experiments. Secondly, we compared location-
based experiments to motion-based experiments. In this section we will look at two
more comparisons: FORM location-based experiments for multiple-subjects in an
analogous contexts and FORM location-based experiments for the same subject
in different contexts. We do this to check that changes in subjects or changes in
contexts do not radically affect our results.

In order to do these experiments, we first created a third FORM data set, Paul.
It contains roughly six minutes of Paul Howard; for the first three Paul is lecturing,
for the second three Paul is having a conversation with someone off camera. S1000
was run using each of these subsections of the data. The results are given in Table
IX.

8.0.2. Results

We see that they follow the same pattern for all three subjects. Retractions are the
easiest to classify, followed by preparations and, finally, strokes. Although strokes
for Brian were below the baseline, the difference is very small. This can, again, be
accounted for by the fact that Brian was lecturing to a class and, therefore, using
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the white board quite a bit. This increased both the location and shape ranges
of his strokes. The most interesting thing here is that the 20 minutes of data in
Brian didn’t do as well as the 3 minutes of Craig or the 3 minutes of Paul. Brian’s
preparations may be cleaner than either Paul’s or Craig’s. Craig’s strokes were the
most easily picked out and, therefore, may also be cleaner. Further research should
be conducted to discover the characteristic of the cleanest members of each phase.
We should then explore whether these prototypes can be used in learning algorithms.
For example, we may label a phase based on which prototype it is closest to.

Table IX also compares the results of the two sets of Paul experiments.
Paul/Conversational didn’t do as well at predicting preparations or strokes as did
the Paul/Lecturing. This could simply be caused by the fact that Paul’s gestures
were, subjectively judged, more exaggerated when he was lecturing than in conver-
sation. Retractions were predicted better from the conversational data.

9. Summary

In this paper, we presented an extension to the FORM annotation scheme for gath-
ering gestural data along with a series of experiments designed to serve as a ver-
ification. Although, at this point, these results are preliminary, we have seen that
FORM can be used to predict the mid-level annotation of PSR theory at least as
well as the baseline when using cubic splines to interpolate. And, depending on
the person and the amount of data collected, it may sometimes be better to vector
quantize and sometimes not. Furthermore, these results hold for the cross-context
experiment as well. Finally, it turns out that motion-capture does not do as well
at predicting phases as does FORM, nor do motion-based experiments do as well
as location-based ones. There is still too little data at this point to generate a full
theory. However, these first results look promising.
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